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ТЕХНИЧКИ ЕЛАБОРАТ 

Проблем који се техничким решењем решава: 

Recent studies show that energy consumption of buildings has dramatically increased over the 

last decade, accounting for more than 35% of global energy use. However, with proper 

operation, significant energy savings can be achieved. Demand response is envisioned as a key 

enabler of this operation enhancement, as it may contribute to the reduction of demand peaks 

and maximization of renewable energy exploitation while mitigating potential problems with 

grid stability. In this report, a system based on artificial intelligence that solves the complex 

multi-objective problem to bring demand response (DR) programs to the residential sector is 

proposed. Through the application of novel machine learning-based algorithms, a unique 

control loop is developed to help dwellers determine how and when to use their appliances. 

The feasibility and validity of the proposed system has been demonstrated in a real-world 

neighbourhood where a notable reduction and shift of electricity demand peaks has been 

achieved. Concretely, in accordance with extreme changes in the energy prices, the users have 

demonstrated the ability to shift their demand to periods with lower prices as well as reducing 

power consumption during periods with higher prices, thus fully translating the demand peak 

in time. 

Стање решености тог проблема у свету: 

Recent research work in the field of domestic energy use has been focused on removing the 

assumption that the demand is given and fixed, and on investigating feasible DSM approaches 

that dynamically adjust the demand, in order to fulfil or improve a specified performance 

requirement. These methods yield additional flexibility and introduce new degrees of freedom 

as part of novel energy management approaches and commercially available products (e.g., 

Siemens DRMS or Akuacom DRMS by Honeywell), since the demand had otherwise been 

assumed to be passive and static in classic formulations. In this regard, a number of approaches 

investigating the demand-side optimization have been analysed. For example, a multi-objective 

genetic algorithm approach for implementing DSM activities in an automated warehouse has 

been presented [1]. Furthermore, a modified genetic algorithm has been used to optimize the 

scheduling of direct demand control strategies [2]. Additionally, an autonomous DR system 

that tries to achieve both optimality and fairness with respect to the involved participants was 

designed in [3]. Finally, an integration of RES and electric vehicles with proper home DSM 

has been evaluated through different scenarios in [4]. 

Integrated approaches that consider both the supply side through optimal energy dispatching 

and demand-side through and DSM have, in general, received somewhat less attention in the 

literature. An integrated DSM program for multiple entities (represented by designated Energy 

Hubs) was proposed as a non-cooperative game within a cloud based infrastructure in [5]. This 

DSM program was demonstrated only for entities with critical loads hence optimizing only 

their supply side. Each entity was incentivized to participate in the program which required the 

exploitation of different supply energy carriers, thus affecting the overall energy supply price 

value. This approach did not consider the possibility of influencing the non-critical demand, 

which may be key to exploit the full capabilities of DSM approaches. The Energy Hub concept 



has also been applied for the optimization of energy flows in simulated interconnected 

networks [6], but without taking into account DSM actions. 

Another existing problem in the scenario presented in this article is accurately forecasting the 

energy to be produced by renewable energy sources (RES) and to be consumed by the dwellers. 

Depending on the specific RES, various techniques could be found in literature. Nevertheless, 

for all of them, there are two different approaches in this field – physical and data-driven 

modelling [7]. Physical models, based on mathematical models, are usually less precise, require 

various characteristics but are interpretable and understandable. Nevertheless, practically, they 

are the only once present in literature when solar thermal collectors (STC) modelling is 

considered. Therefore, since the particular pilot site that was considered within this technical 

solution was equipped with STC, in order to improve SoA machine learning based model were 

utilized. Since data-driven models, which require a large amount of historical data, are usually 

capable of much more precise modelling, it was expected that this approach will improve 

current SoA. Additionally, none of the physical parameters were required in order to implement 

this approach. 

Similar to the energy production forecasting, there is extensive research on the topic of 

forecasting of energy demand. One study investigates fifteen anonymous individual 

household’s electricity consumption forecasting using a support vector regression (SVR) 

modelling approach, applied both to daily and hourly data granularity in [8]. In this experiment, 

households’ occupation, dwelling properties and socioeconomic status were unknown. 

Therefore, aggregating hourly consumption to daily was an effective way to mitigate the impact 

of randomness in hourly behaviours of family members. Under the assumption that there 

usually exists an intrinsic low-dimensional structure governing the data recorded from a 

collection of residential houses and that using this structure in load forecasting can help 

improve the forecasting performance, a compressive load forecasting approach incorporating 

both temporal and spatial information is presented in another study [9]. The proposed method 

is called non uniform compressive spatio-temporal load forecasting (CST-LF) as it is inspired 

by compressive sensing (CS) and structured-sparse recovery algorithms, and it is tested against 

various benchmark models using real and high-quality data, showing that the proposed 

approach improves the short-term electric demand forecasting. A research focused showing 

how calendar effects, forecasting granularity and the length of the training set affect the 

accuracy of a day-ahead load forecast for residential customers [10]. Regression trees, neural 

networks, and support vector regression were tested, and the former was the technique 

obtaining best results. The use of historical load profiles with daily and weekly seasonality, 

combined with weather data, leaves the explicit calendar effects a very low predictive power. 

In the setting studied in the article, it was shown that forecast errors can be reduced by using a 

coarser forecast granularity. It was also found that one year of historical data is enough to 

develop a load forecast model for residential customers as a further increase in training data set 

has a marginal benefit. 

When considering optimization approaches, various applicable methodologies can be found in 

the related literature. Some authors employ complex nature-inspired heuristics such as the 

genetic algorithm as in [11], particle swarm optimizations as in [12], as well as artificial neural 

networks like in article [13]. However, when working with data with medium-sized resolutions 

such is the case with hourly measurements that are most often given by RES production and 

demand forecasting algorithms, more efficient algorithms with simplified models such as linear 

programming and its extension, mixed-integer linear programming (MILP), are used more 

often. Day-long optimizations using a MILP model with PV and storage systems are detailed 



in [14], with the same horizon also found in [15] with a larger temporal resolution (15 min). 

On the other hand, MILP models have also been employed for long-term feasibility 

assessments owing to their high efficiencies, as analysed in [16]. However, this application of 

optimizations is out of the scope of this paper. 

Опис техничког решења са карактеристикама, укључујући пратеће 

илустрације и техничке цртеже: 

Methodology 

This technical solution aims to deploy and demonstrate an interoperable, cost-effective and 

user-cantered system, entailing energy automation, control and monitoring tools for a seamless 

integration of cooperative DR programs into the legacy energy management systems. In this 

endeavour, it leverages an integrated approach for optimal energy dispatching, taking into 

account both supply and demand side, while exploiting all energy assets available at the site. 

More specifically, it aims at reducing energy demand peaks and maximizing the exploitation 

of renewable energies, by implementing a set of control actions that cause dwellers as few 

disturbances as possible in their everyday life. The particular solution that will be explained in 

this technical solution was tested in real world practice, in Madrid, Spain. The particular pilot 

was a residential building equipped with a number of IoT sensors and a solar thermal collector 

as the renewable energy source.  

The proposed solution was envisioned as the AI-based control loop given in Figure 1. Namely, 

the idea was to allocate the most suitable demand profiles both at neighbourhood level as a 

driver for reducing the energy demand in specific time periods, as well as for maximizing the 

exploitation of renewable energy. To do so, five main blocks have been used: measurement, 

forecasting, demand response message generator, optimization and control block. In briefest 

possible terms, the measurement block was in charge of collecting and storing all the available 

sensor and non-sensor data. The forecasting block attempted to combine records of this data to 

provide projections of future production and consumption. Having in mind global issues such 

as demand and production peaks, a grid-responsible entity was given an opportunity to define 

so-called DR messages that were used as inputs to the optimization block (along the forecasted 

profiles) in order to guide the model towards the desired load curve. Finally, the outputs of the 

optimization block were analysed by its control counterpart which suggests concrete control 

actions that the dwellers (end users) should carry out. With more detailed explanations of each 

component given in the following paragraphs, through the adequate interaction between these 

services, optimal dispatching of energy with regards to DR events is ensured. 

 

Figure 1 - AI-based control loop 



The measurement block was designed as the centralized data storage platform with various 

heterogeneous data sources. It contained time series data base (InfluxDB) for various IoT 

measurements from the pilot site (e.g., electrical energy consumption), relational DB (MySQL) 

and semantic repository, with different data stored – IoT measurements, meteorological data 

(both observations and forecasts) obtained from WeatherBit1 service, pilot topology, outputs 

of analytical services, etc.  

The second block were the forecasters – for production and the demand, which were envisioned 

to provide estimated production/demand profiles on a day-ahead basis with an hourly time 

resolution. The production forecaster was a data driven model which mapped forecasted 

meteorological parameters to the expected RES production. For this purpose, various machine 

learning approaches were considered and benchmarked, such as support vector regression, 

linear regression, different neural network architectures, kNN and random forecast. In all cases, 

optimal hyper parameters were chosen using grid search and by minimizing the mean absolute 

percentage error (MAPE). In total, 935 models have been trained and for the forecasting energy 

production by STC the neural network with only 2 hidden layers containing 40 and 5 neurons 

has been chosen with more details given in [17]. 

When demand forecasting is considered, it was designed to provide the expected load curve 

with the same time horizon and resolution as the production forecaster – day-ahead with hourly 

resolution. As for the collection of machine learning algorithms that were tested for the 

development of this service, it included auto-regressive integrated moving average (ARIMA), 

linear regression, support vector regression and K-nearest neighbor (kNN) and final model 

resulted into mapping hourly consumption from the previous day together with the different 

time-related variables into the expected load using kNN algorithm. More details regarding the 

development of this model are given in [18]. 

The third block within the control loop was the demand response messages generator. As 

previously mentioned, DR implementations have already existed in the industrial sector for 

some time. The concept, with minor modifications, essentially adheres to the following 

structure: an aggregator or similar intermediary entity makes arrangements with industrial users 

that can offer flexibility in terms of utilizing a set of large consuming processes or machines. 

The frequency, duration and intensity of allowed load modifications coming from these 

consumers is contracted, meaning that the industrial user is expected to, upon request or at 

certain predefined times, allow for power required by the mentioned processes and machines 

to either be significantly decreased or increased. This mechanism is most commonly used for 

load reduction with large-scale heaters and chillers for easing the burden on the grid during 

peak hours. However, similar mechanisms can also be employed to balance unexpected 

production spikes, especially in systems that incorporate large capacities of renewable 

generation. In return for the provided flexibility, the aggregator offers monetary compensation 

while it also receives compensation from the grid-side operators for improving the stability of 

the system. Two types of DR messages are defined – explicit and implicit ones. The term 

implicit DR is used to refer to instances where the optimal demand profile is inferred without 

specifically defining the amounts by which the load should be modified at different times. One 

of the most common implicit DR approaches different pricing schemes which influence users 

to change their usage (e.g., simple static time of use tariffs (ToU)). On the other hand, explicit 

DR events are steering the demand towards the desired values by explicitly defining the 

necessary corrections. Namely, since the system includes both production and demand 

forecasting services, both the supply and demand curves are estimated before the optimization 

                                                           
1 https://www.weatherbit.io/ 



is activated. By analyzing their relation for any major disparities, or by considering them 

separately, an aggregator-like entity or balance-responsible party can, using its expert inputs, 

determine precisely the demand that should be adjusted.  

In the particular use case for which the obtained results will be elaborated, the implicit DR 

approach has been implemented. Namely, extreme pricing has been applied in the Madrid pilot 

site with the goal of observing dweller responses to so called “happy hours” with free energy. 

Namely, the observed 2-year long period has been split into two periods, the baseline period (1 

November 2018–31 October 2019) and the validation period (1 November 2019–31 October 

2020). The former was used to determine the reference behavior of the dwellers in terms of 

energy consumption (typical demand profile, typical total consumed energy, etc.). During the 

latter period, the dwellers that have signed contracts with Fenie Energia have been switched 

between different experimental pricing tariffs and changes in their behavior were recorded. 

With different dwellings being contracted to 

different plans and each one having its own 

higher electricity price (P1) and lower 

electricity price (P2) values, the corresponding 

prices for the analyzed dwellings, applicable for 

both the baseline and validation periods, are 

given in Table 1. During the baseline period, the 

dwellings considered in this analysis were 

contracted to ToU tariffs that follow the shape 

illustrated in Figure 2 with appropriate P1 and 

P2 values from Table 1. On the other hand, Table 2 shows how the pricing tariffs have varied 

during the validation period. Furthermore, different cases employ different periods of the day 

when energy is offered for free. Although minor differences between price values for pilot 

dwellings do exist, since all the dwellings are subject to the same tariff profile from Table 2 at 

a given time, the differences can be neglected when considering all dwellings jointly. 

Table 1 - Electric energy prices for experimental tariffs in [EUR/kWh] 

 

Table 2 - Different experimental pricing tariff profiles 

 

The fourth block of the control loop and the core of this AI-based system was the optimization 

engine aimed at minimizing the costs for the end user while taking into consideration inputs 

from the forecasting production and demand services, generated DR messages (either implicit 

or explicit), pricing scheme, grid requirements, user flexibility, etc. Namely, the optimization 

block is aimed at converting forecasted energy production and demand and custom grid-related 

requests into an optimal demand curve for an entire neighborhood. Using supposed demand 

Figure 2 - An example of time of use (ToU) tariffs that can 
be utilized for implicit demand response (DR). 



flexibility, the optimizer shifts the demand in intensity and in time to generate a profile that is 

the most cost-effective for dwellers and most stable for the grid operator. 

This optimization model is developed upon the core constraints that govern the way the Energy 

Hub is used to model energy transmission and transformation, as described in [54]. It 

minimized a linear combination between a set of constants and variables, and as such can be 

optimized using well-known and efficient state-of-the-art algorithms for these types of MILP 

problems with their essentials described in [56]. The proposed optimization engine was 

designed to provide an optimal load profile for day ahead with an hourly time resolution taking 

into consideration above mentioned constraints.  

Finally, the last block of the proposed control loop was the control translator service which was 

envisioned to translate optimal load profile to the control actions for the end users. This block 

was focused on generating the scheduling of appliance usage (e.g., turning the dishwasher on 

at a certain time) by implementing a heuristic optimization algorithm. More specifically, the 

tabu search (TS) algorithm was used, which aims to solve combinatorial or non-linear 

optimization problems through memory and so called tabu restrictions [60]. The actual actions 

proposed by this heuristics service were guided by the preferences set for each dwelling (type 

of actions allowed by each dweller (e.g., switch on or switch off), appliances upon which these 

actions may be performed and corresponding time intervals, etc.), especially the periods of time 

when the applications might be activated and they could be both user-specific or mass 

recommendations for all the neighbors. 

After the whole proposed control loop has been presented, the obtained results from the Madrid 

pilot site will be given. The main use case that was analyzed, to determine to what extent the 

dwellers could respond to different conditions and display flexibility in their power 

consumption, was the application and effects of price-based implicit DR events that were 

implemented in the Madrid pilot site. 

Results 

As already presented in this report, the proposed control loop has been tested in the Madrid 

pilot site with the extreme pricing schemes given in Table 1 and Table 2. The first two tariff 

cases (Case 1 and Case 2) have not resulted in major modifications to the load profile as the 

periods with free energy correspond to periods when energy was also cheaper before. However, 

this has prompted the inclusion of the latter two tariff cases (Case 3 and Case 4) where the 

dwellers have been offered the so-called “happy hours” or, in other words, periods during the 

afternoon when they can consume energy for free. This experiment was designed specifically 

with the goal of providing a notable incentive for displayed demand flexibility, and therefore, 

testing if such flexibility can be induced. With the Case 3 tariff initially offering two short one-

hour-long periods with free energy, it was later extended to include two two-hour-long “happy 

hour” periods, as defined by Case 4 tariff. This case will be specifically analyzed in the 

following paragraphs to illustrate the observed effects of implicit DR. 

In order to provide the data of the best quality for both baseline and validation periods, logs 

obtained from the measurement block have been employed to extract hourly electric energy 

consumption. The resulting values have been manually curated so that only day-long logs with 

continues values remain, meaning that the days with periods in which the corresponding 

measurements do not follow the typical demand curve (e.g., values are constant or only display 

white noise) have been removed. By doing this, only the days when the dwellers have been 

actively using their appliances have been considered. Given the length of the different tariff 



cases during the validation period, it was decided that the best analysis could be provided by 

comparing the same month of two different years. A month-long period is considered long 

enough to provide enough data for meaningful analysis, but still short enough so that the 

expected behavior of the dwellers can be comparable, given the presumed similar average 

meteorological conditions, holidays, and so forth. Therefore, the baseline month for in depth 

analysis was selected to be June 2019 while the validation month was selected to be June 2020. 

The resulting data contained the following number of day-long sets of hourly energy 

consumption: 132 for the baseline period and 241 for the validation period, further separated 

into working days and nonworking days (weekends or public holidays). Since related literature 

generally regards working days and nonworking days as different categories for energy 

consumption analysis, and since working days were more frequent in the curated data, the use 

case that will be elaborated next will focus only on data corresponding to working days. 

The extracted values are evaluated jointly for all dwellings, meaning that if the extracted data 

were to be considered as a table, each row would correspond to one day-long record for a given 

house on a given day, while the columns would correspond to hours of a day. In order to 

illustrate the distribution of total hourly energy consumption, a number of metrics have been 

evaluated. Let 𝐿𝑘 denote the sample distribution of individual data observations x that 

corresponds to consumption between 𝑘 and 𝑘 + 1 hours and 𝐹𝐿𝑘
(𝑥) denote the corresponding 

cumulative distribution function (CDF). If defined as such, observations of 𝐿𝑘 are given in 

column 𝑘 of the data table. Then, for each 𝑘 a set of quartiles is calculated using the following 

definition 

𝑞𝑛(𝐿𝑘) = 𝑝 ⇔ 𝐹𝐿𝑘
(𝑥) = 𝑃(𝑥 ≤ 𝑝) = 𝑛 ⋅ 25% 

where the ordinal constant is chosen as 𝑛 ∈ {1, 2, 3}  and therefore corresponds to the 25th, 50th 

(median) and 75th percentile. Figure 3 illustrates how these metrics change on an hourly basis 

for the chosen baseline month and validation month. The first observation that can be made is 

that the difference in tariffs appear to have made a significant impact on the shape of the third 

quartile of the consumption curves. In other words, the two peaks between 12:00 and 15:00 

and between 19:00 and 22:00 observable for the 𝑞3(𝑡) curve in Figure 3a appear to have been 

substituted by a single, more pronounced peak, in the corresponding curve from Figure 3b 

between 15:00 and 17:00, exactly when the “happy hours” are placed. In addition, by 

subtracting the two curves that depict median hourly consumption 

Δ𝑞2(𝑘) = 𝑞2−valid(𝑘) −  𝑞2−base(𝑘) 

set of median consumption deltas is obtained and depicted in Figure 4a. As is clearly shown 

here, the dwellers exhibited a clear bias towards lower energy consumption during the 

validation period when compared to the baseline one with the average median consumption 

delta equaling Δ𝑞2  =  −82.2 W. However, by centering the median consumption deltas with 

the average median consumption delta 

Δ𝑞2center
(𝑘) = Δ𝑞2(𝑘) − Δ𝑞2

̅̅ ̅̅ ̅ = Δ𝑞2(𝑘) −
1

24
∑ Δ𝑞2(𝑘)

24

𝑘=1

 

a set of centered deltas is obtained and is illustrated in Figure 4b. Here it can be observed that 

the most notable delta when compared to the average are between 14:00 and 17:00 which 

corresponds to the “happy hour” period. As was expected, this increase in consumption is not 

a result of the need for additional energy (which is also clear from Figure 3a) but rather the 



temporal relocation of existing consumption, with the periods mostly affected by overall 

demand decrease between 12:00 and 15:00.  

Going back to the absolute changes from Figure 4a, even though, on average, the hourly 

consumption during the validation month is lower, the difference is positive at Δ𝑞2(15) =
93.2 W W between 15:00 and 16:00, further illustrating the notable effects that are made to the 

demand allocation by the introduction of the “happy hours” with free energy. 

 

Figure 3 - Comparison between the distributions of hourly energy consumptions 

 

Figure 4 - Deltas between median hourly electric energy consumption 

However, observing and analysing absolute changes in power consumption between different 

periods of time usually requires much more complex means of normalization that would take 

into account different factors that influence the overall consumption such as meteorological 

conditions. As the available data in this regard is relatively limited, a much more informative 

analysis can be conducted when observing the differences in demand profiles. In order to do 

this, the ratio of median energy consumed for each hour with respect to the total daily 

consumption is calculated as 

𝑞2𝑝𝑟𝑜𝑓−𝑖
(𝑘) =

𝑞2−𝑖(𝑘)

∑ 𝑞2−𝑖(𝑘)24
𝑘=1

 

for 𝑖 ∈ {base, valid} and is depicted in Figure 5. As this graph clearly shows, during the night-

time and early morning periods, where there are no modifications to the tariff, no significant 

differences can be observed between the demand profiles. 

However, a significant shift is to be noted for the peak period that was between 12:00 and 14:00 

and appears to have moved to between 14:00 and 16:00 during the validation month. 

Furthermore, a slight decrease of consumption between 16:00 and 20:00 is also evident during 

the period with higher prices, as well as an increase in the allocated demand ratio between 



22:00 and 00:00 which, again, corresponds to hours with free energy. Table 3 shows a section 

of most notable demand profile values as well as their absolute and relative differences defined 

as 

Δ𝑞2prof
(𝑘) =  𝑞prof−valid(𝑘) − 𝑞prof−base(𝑘) and 𝛿𝑞2prof

(𝑘) = Δ𝑞2prof(𝑘)/𝑞prof−base(𝑘) 

These values once again illustrate the impact that is made by the “happy hours” on the shape 

of the energy profile, but also show that, given proper incentives, dwellers can display 

significantly more flexibility than was originally presumed. 

 

Figure 5 - Visual comparison between hourly demand profiles 

Table 3 - Most notable differences between hourly demand profiles 
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Abstract: Recent studies show that energy consumption of buildings has dramatically increased over
the last decade, accounting for more than 35% of global energy use. However, with proper operation,
significant energy savings can be achieved. Demand response is envisioned as a key enabler of this
operation enhancement, as it may contribute to the reduction of demand peaks and maximization of
renewable energy exploitation while mitigating potential problems with grid stability. In this article,
a system based on artificial intelligence that solves the complex multi-objective problem to bring
demand response programs to the residential sector is proposed. Through the application of novel
machine learning-based algorithms, a unique control loop is developed to help dwellers determine
how and when to use their appliances. The feasibility and validity of the proposed system has
been demonstrated in a real-world neighbourhood where a notable reduction and shift of electricity
demand peaks has been achieved. Concretely, in accordance with extreme changes in the energy
prices, the users have demonstrated the ability to shift their demand to periods with lower prices as
well as reducing power consumption during periods with higher prices, thus fully translating the
demand peak in time.

Keywords: demand response; demand flexibility; artificial intelligence; machine learning; energy
savings; peak shaving

1. Introduction

Buildings’ energy consumption has dramatically increased over the last decade due
to different factors including the population growth, the increase in time spent indoors
or the increased demand for building functions and indoor life quality [1]. As a matter
of fact, according to the United Nations Environment Programme (UNEP), buildings
account for more than 35% of global energy use and nearly 40% of energy-related CO2
emissions [2]. Nevertheless, significant energy savings can be achieved in buildings if they
are properly operated.

In this domain, the residential sector is specially promising as it is characterized by
many end consumers with relatively low individual energy demand, but with very high
demand when considered in terms of home clusters, districts and residential communities.
Evidence of this is that residential buildings represented the 25.4% of final energy con-
sumption and 17.4% of gross inland energy consumption in the EU in 2016 [3]. The major
end-uses responsible for these figures are space and water heating, followed by appliances,
cooking and lighting [4].

Apart from the large energy consumption of buildings, peak energy demand certainly
attracts lots of attention because of its negative impacts on energy grid capital, operational
costs and environmental pollution to name a few. This impact is a direct consequence of
the carbon-intense generation plants that grid operators deploy in order to satisfy energy
demand during these peak periods [5]. One of the resources that could contribute to
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significantly reduce peak demands are renewable energy sources (RES) [6], which are
increasingly penetrating the energy production side. However, due to their intermittent
nature, the renewable energy availability commonly does not match the distribution of
energy demand in time, which may hinder their management and exploitation.

Demand-side management (DSM) activities including load curtailment (i.e., a reduc-
tion of electricity usage) and load reallocation (i.e., a shift of energy usage to other off-peak
periods) have a huge potential as aids in matching energy demand with energy supply,
thus avoiding these undesirable peaks. Furthermore, demand response (DR) programs
are introduced into the smart grids so that reliable and economical operation of power
systems are ensured [7]. DR can be understood as the set of technologies or programs
that concentrate on shifting energy use short-term to help balance energy supply and
demand [8]. In combination with energy generated from RES, DR is envisioned as one of
the crucial enablers of curbing energy demand peaks [9].

However, the implementation of DR programs is not straightforward. The main barri-
ers to adopt DR programs include regulatory, economic, technological and social issues [10].
Furthermore, solving the energy demand optimization for residential neighbourhoods that
takes into account management of collectively shared energy assets such as RES generation
as well as variable pricing tariffs and specific demand flexibility constraints is a complex
multi-objective problem that requires the utilization of artificial intelligence (AI) systems.
And this is where the RESPOND H2020 project (https://project-respond.eu, accessed on
15 March 2021) originates, aiming to bring DR programs to neighborhoods across Europe.
With most contemporary DR implementations considering only the industrial sector, this
paper proposes the simultaneous utilization of multiple different AI-based technologies
such as machine learning and optimization to assist residential consumers that would like
to make use of DR and incorporate it into their energy management systems. The proposed
system considers the forecasted energy production and consumption based on the data
acquired by the deployed Internet of Things (IoT) equipment and looks for modifications
that would mitigate potential instabilities in the energy supply network by applying opti-
mal energy utilization and load shifting. Finally, the predicted and optimal behavior are
analyzed and corrective actions are suggested for dwellers, with the system even allowing
for the possibility of semi-automated (remotely actuated with individual dweller consent)
and fully automated (remotely actuated with previous persisting dweller consent) actions
to be taken in order to minimize the additional effort that needs to be undertaken and
that would disrupt daily habits. In summary, the main contributions of the article are
the following:

• The development of an AI-powered system for demand response in residential buildings;
• The application of the AI-powered system in a real-world neighbourhood;
• Successfully validating dwellers’ willingness to adjust their loads with regards to

changing energy price tariffs in a real-world neighbourhood while noting:

– Decrease of energy demand peaks by above 30%;
– Increase of energy demand in non-peak periods by nearly 50%;

The remainder of the article is structured as follows. Section 2 analyzes the relevant
previous work related to the presented problem. Section 3 introduces the RESPOND project.
Section 4 presents RESPOND’s AI system for optimal energy dispatching with DR events
in ind for avoiding energy demand peaks and maximizing energy coming from RES while
Section 5 showcases it with a real-world example. Finally, the conclusions of this work are
presented in Section 6.

2. Related Work

Recent research work in the field of domestic energy use has been focused on remov-
ing the assumption that the demand is given and fixed, and on investigating feasible DSM
approaches that dynamically adjust the demand, in order to fulfil or improve a specified
performance requirement. These methods yield additional flexibility and introduce new
degrees of freedom as part of novel energy management approaches and commercially

https://project-respond.eu
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available products (e.g., Siemens DRMS or Akuacom DRMS by Honeywell), since the de-
mand had otherwise been assumed to be passive and static in classic formulations. In this
regard, a number of approaches investigating the demand-side optimization have been an-
alyzed. For example, a multi-objective genetic algorithm approach for implementing DSM
activities in an automated warehouse has been presented [11]. Furthermore, a modified
genetic algorithm has been used to optimize the scheduling of direct demand control strate-
gies [12]. An autonomous and distributed demand-side energy management system based
on game theory has also been proposed [13]. Additionally, an autonomous DR system
that tries to achieve both optimum and fairness with respect to the involved participants
was designed in [14]. A fuzzy logic approach utilizing wireless sensor networks (WSN)
and smart grid incentives for load reduction in residential heating, ventilation and air
conditioning (HVAC) systems has also been presented in [15]. Finally, an integration of
RES and electric vehicles with proper home DSM has been evaluated through different
scenarios in [16].

Integrated approaches that considers both the supply side through optimal energy
dispatching and demand-side through and DSM have, in general, received somewhat less
attention in the literature. An integrated DSM program for multiple entities (represented
by designated Energy Hubs) was proposed as a non-cooperative game within a cloud-
based infrastructure in [17]. This DSM program was demonstrated only for entities with
critical loads hence optimizing only their supply side. Each entity was incentivized to
participate in the program which required the exploitation of different supply energy
carriers, thus affecting the overall energy supply price value. This approach did not
consider the possibility of influencing the non-critical demand, which may be key to exploit
the full capabilities of DSM approaches. The Energy Hub concept has also been applied for
the optimization of energy flows in simulated interconnected networks [18], but without
taking into account DSM actions.

Another existing problem in the scenario presented in this article is accurately fore-
casting the energy to be produced by RES and to be consumed by the dwellers. Energy
production forecasting approaches can be divided in three groups depending on the ap-
proach used for the estimation of the production: physical models, statistical models and
hybrid models [19–21]. However, what all of these methodologies have in common are
their inputs, as they all model the dependency of the renewable production on the weather
conditions. Physical approaches were presented first and offer models represented by sets
of mathematical equations and physical laws which depict the renewable system. Even
though they were replaced by the novel data-driven approaches in the field of, for example,
photovoltaic (PV) panel energy forecasting, these models are practically the only ones
presented in literature regarding solar thermal collectors (STCs) production [22]. However,
for PV forecasting, physical models are usually outperformed by data-driven approaches,
which are present in state of the art (SoA) articles. Nonetheless, due to the fact that their
estimation is based on the mathematical modeling of the system, their main advantage
is that they do not need any historical data, so in some scenarios in which historical data
is not available, they are the only applicable ones. However, for the application of these
methodologies, numerous physical parameters are required. This is a significant draw-
back, having in mind that these characteristics are usually hard to access. On the other
hand, data-driven models, both regressive (autoregressive (AR), autoregressive moving
average (ARMA), autoregressive integrated moving average (ARIMA), autoregressive
moving average model with exogenous inputs (ARMAX), nonlinear autoregressive mov-
ing average with exogenous inputs (NARMAX), etc.) and machine learning-based (neural
networks, support vector machines, random forests, kNNs, etc.) require a large amount
of historical data, but are capable of much more precise modelling, which significantly
improves performances. Additionally, none of the physical parameters are required in
order to implement this approach. Finally, hybrid approaches tend to combine benefits
from previously presented models in order to further improve upon them.
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Similar to the energy production forecasting, there is extensive research on the topic
of forecasting of energy demand. One study investigates fifteen anonymous individual
household’s electricity consumption forecasting using a support vector regression (SVR)
modelling approach, applied both to daily and hourly data granularity in [23]. In this
experiment, households’ occupation, dwelling properties and socioeconomic status were
unknown. Therefore, aggregating hourly consumption to daily was an effective way to
mitigate the impact of randomness in hourly behaviours of family members. Under the
assumption that there usually exists an intrinsic low-dimensional structure governing the
data recorded from a collection of residential houses and that using this structure in load
forecasting can help improve the forecasting performance, a compressive load forecasting
approach incorporating both temporal and spatial information is presented in another
study [24]. The proposed method is called nonuniform compressive spatio-temporal load
forecasting (CST-LF) as it is inspired by compressive sensing (CS) and structured-sparse
recovery algorithms, and it is tested against various benchmark models using real and high-
quality data, showing that the proposed approach improves the short-term electric demand
forecasting. A research focused showing how calendar effects, forecasting granularity and
the length of the training set affect the accuracy of a day-ahead load forecast for residential
customers [25]. Regression trees, neural networks, and support vector regression were
tested, and the former was the technique obtaining best results. The use of historical load
profiles with daily and weekly seasonality, combined with weather data, leaves the explicit
calendar effects a very low predictive power. In the setting studied in the article, it was
shown that forecast errors can be reduced by using a coarser forecast granularity. It was
also found that one year of historical data is enough to develop a load forecast model for
residential customers as a further increase in training data set has a marginal benefit.

When considering optimization approaches, various applicable methodologies can be
found in the related literature. Some authors employ complex nature-inspired heuristics
such as the genetic algorithm as in [26,27], particle swarm optimizations as in [28], as well
as artificial neural networks like in article [29]. However, when working with data with
medium-sized resolutions such is the case with hourly measurements that are most often
given by RES production and demand forecasting algorithms, more efficient algorithms
with simplified models such as linear programming and its extension, mixed-integer linear
programming (MILP), are used more often. Day-long optimizations using a MILP model
with PV and storage systems are detailed in [30], with the same horizon also found in [31,32]
with a larger temporal resolution (15 min). On the other hand, MILP models have also been
employed for long-term feasibility assessments owing to their high efficiencies, as analyzed
in [33]. However, this application of optimizations is out of the scope of this paper.

3. The RESPOND Project

The RESPOND project aims to deploy and demonstrate an interoperable, cost-effective
and user-centered solution, entailing energy automation, control and monitoring tools for a
seamless integration of cooperative DR programs into the legacy energy management sys-
tems. In this endeavor, RESPOND leverages an integrated approach for an optimal energy
dispatching, taking into account both supply and demand side, while exploiting all energy
assets available at the site. More specifically, RESPOND aims at reducing energy demand
peaks and maximizing the exploitation of renewable energies, by implementing a set of
control actions that cause dwellers as few disturbances as possible in their everyday life.

Towards that goal, a central IoT platform has been developed for the acquisition,
processing and exploitation of relevant data collected in neighborhoods. This platform is
comprised of different components and its architecture is depicted in Figure 1, with more
details presented in Section 4.1. It is worth mentioning that ensuring consumer’s data
privacy has been a prime requisite of this platform, since consumers are often concerned
with sharing their energy consumption data as found in [34]. As a matter of fact, a formal
specification of data usage requirements for the built environment has been proposed
towards the development of a trustworthy data sharing ecosystem in [35].
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Figure 1. The RESPOND Internet of Things (IoT) platform architecture for acquiring, processing and exploiting data.

With the purpose of demonstrating the RESPOND solution, it is being implemented
in different types of residential buildings (i.e., apartments, single-family and multi-family
houses), situated in different climate zones (i.e., Mediterranean, oceanic and humid conti-
nental climate), but sharing the same microclimate within each pilot site, having different
forms of ownership (i.e., rental and home-ownership), population densities and underlying
energy systems. Namely, the three RESPOND pilot sites are located in Aarhus (Denmark),
the Aran Islands (Ireland) and Madrid (Spain). Each pilot site is regarded as a neighbour-
hood of dwellers that can make use of some type of grid connection (for either electric
energy, heating or both) alongside a locally generated renewable source. In that sense, each
pilot provides a suitable testbed for the integration of DR management technologies. Since
DR has historically been significantly more prominent in the industrial sector, and with
residential users presenting unique challenges, a set of AI-based services is foreseen by the
RESPOND project to help users make the best use of different types of available energy
while also providing positive effects for the distribution system through the utilization of
demand-side flexibility. These services include machine learning-powered forecasting for
both energy generation and energy consumption coupled with an optimization algorithm
that is supposed to provide feedback to the dwellers regarding the best way in which to
organize their consumption in different conditions.

Concretely, the residents of the Aarhus pilot can make use of either grid imported
electricity along with locally produced energy via PV panels to fulfill their electric demand.
On the other hand, they rely on a district heating system for their thermal and domestic
hot water demand. Likewise, besides grid connections, the dwellers on the Aran Island
pilot also have locally produced electricity via PV panels while they fulfill their thermal
domain using heat pumps. The Madrid site has a shared solar thermal collector which,
along with two gas boilers, fulfils the heating demand while electric demand is met using
only the grid connection.

Having such a heterogeneous group of dwellers hinders the diffusion and impact
of DR solutions and makes it more difficult to ensure sustained user engagement with
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DR programs. This is why interaction with dwellers is considered as a key point in the
RESPOND project. Consequently, as previously mentioned, a set of tools and services
are planned to deliver measurement-driven suggestions to dwellers for energy demand
reduction and influence their behavior making them an active indispensable part of DR
loop. One of these tools is the RESPOND mobile app, a multilingual and cross-platform
mobile app which contributes to the user engagement. It is available for download both
in Google Play and App Store and gives the dweller direct and detailed insight into all
relevant monitored data. The added value of the RESPOND mobile app lies in its ability to
suggest to dwellers energy conservation opportunities, which are a direct result of the AI
system described in the next Section.

4. An Artificial Intelligence System for Optimal DR Strategies

Although AI is not something new, currently it is experiencing an upsurge that
can be attributed to advances in computing and the increasing availability of data [36].
Different definitions for AI can be found in the literature and according to the European
Commission’s High-Level Expert Group on Artificial Intelligence [37], AI systems are
software (and possibly hardware) systems that, given a complex goal, act in the physical or
digital dimension by perceiving the environment through data acquisition, interpreting the
collected structured or unstructured data, reasoning on the knowledge or processing the
information derived from this data and deciding the best action(s) to take to achieve the
given goal.

RESPOND aims to allocate the most suitable demand profiles both at a dwelling and
neighborhood levels as a driver for reducing the energy demand in specific time periods,
as well as for maximizing the exploitation of renewable energy. To do so, RESPOND
has proposed the AI system depicted in Figure 2 which has five main blocks: measure-
ment, forecasting, demand response message generator, optimization and control block.
In briefest possible terms, the measurement block is in charge of collecting and storing
all the available sensor and non-sensor data. The forecasting block attempts to combine
records of this data to provide projections of future production and consumption. Having
in mind global issues such as demand and production peaks, a grid-responsible entity
is given an opportunity to define so-called DR messages that are used as inputs to the
optimization block (along the forecasted profiles) in order to guide the model towards the
desired load curve. Finally, the outputs of the optimization block are analyzed by its control
counterpart which suggests concrete control actions that the dwellers (end users) should
carry out. With more detailed explanations of each component given in the following
paragraphs, through the adequate interaction between these services, optimal dispatching
of energy with regards to DR events is ensured.

sensors

gateways

DBs

Production 
forecasting 

service

Demand 
forecasting 

service

Optimization 
service

DR message 
generator

Control 
translator 

service user 
preferences

control
actions

Forecasted production curve

Forecasted demand curve

Optimal aggregate
demand curvesDR messages

Tariff information (energy prices)

actuators/
devices

gateways

Measurements

Figure 2. The RESPOND Artificial Intelligence (AI) system loop.

Next, each of these five blocks are detailed. Although the proposed AI system is
developed with flexibility in mind to handle different types of energy carriers including
electric, thermal and domestic hot water (DHW), as well as their possible interconnection
points like converters and heat exchangers, the demonstrations given in following sections
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as well as the use case elaborated on towards the very end of the paper will focus solely on
the electric domain.

4.1. Measurement

The sensor technology embedded in IoT devices is continuously becoming cheaper,
more advanced and more widely available, thus moving beyond disruption to become a
mainstay of daily life. The residential sector is no exception to this expansion, and according
to a report conducted by Navigant Research [38], the global annual revenue from residential
IoT device sales will reach $167.2 billion in 2027.

In the context of the RESPOND project, the monitoring of real-world qualities and
events within dwellings and neighborhoods is performed with smart home monitoring
solutions provided by Energomonitor (https://www.energomonitor.com, accessed on
15 March 2021) and Develco (https://www.develcoproducts.com, accessed on 15 March
2021). These solutions comprise the equipment necessary for the acquisition of observed
ambient (e.g., temperature or humidity) and energy (e.g., electric demand or gas consump-
tion) data. Regarding the energy consumption, it was registered both at an appliance
level with a smart plug (which also allowed remotely switching it on or off) and at a
household level with smart meters. Monitoring is complemented with an OpenMUC
(https://www.openmuc.org, accessed on 15 March 2021)-based gateway which is also
able to acquire data from other monitoring and control applications that are not from
Energomonitor or Develco. Regarding other relevant data such as energy price or weather
information, which is not monitored with installed physical devices, it is collected from
external sources. As illustrated in Figure 1, all this data is sent to the MQTT (Message Queu-
ing Telemetry Transport) broker middleware, which allows the integration of information
coming from different sources, as well as the communication between different components.
The communication with the MQTT broker is done via the publish/subscription method,
which decouples the client that sends the message (the publisher) from the client or clients
that receive the messages (the subscribers). Since there are differences in hardware and soft-
ware implementations of devices produced by different vendors, a canonical data model
(CDM) is designed to work along with the MQTT message exchange protocol and to ensure
interoperability among different system components. The implementation of the CDM
enables unifying the data using protocol converters that abstract diverse protocols of legacy
and newly installed equipment. The benefit of such an approach is that each protocol needs
to be converted only into common format and back, which results in a linearly growing
number of adapters (2N) compared with the traditional exponential growing number of
adapters (N2).

Complimentary to the data acquisition equipment and services, the RESPOND Mea-
surement block counts on data repositories. Due to the diverse types of data collected,
three different database systems are considered—time series databases (TSDB), triplestores
or semantic repositories and relational databases.

IoT data, which is characterized by its abundance, is recommended to be stored in
TSDBs. These databases are optimized for time series data and designed to handle high
write and query loads as well as down-sampling and deletion of old data, thus being able
to manage an amount of data while ensuring a high performance. This is why, one of
RESPOND’s data storage systems is InfluxDB (https://www.influxdata.com/products/
influxdb-overview, accessed on 15 March 2021), an open source TSDB.

In the built environment, the integration of static building information and IoT data
has become one of the main challenges [39]. Furthermore, easy and intuitive ways to
rapidly browse, query and use building information combined with IoT data are not
usually available [40]. Semantic technologies can aid in solving these issues, as they
allow for more dynamic manipulation of the building information in resource description
framework (RDF) graphs by means of query and rule languages. Therefore, the RESPOND
platform takes advantage of a semantic repository to store the static building information.
Semantic repositories are optimized for hosting this type of data and usually support a

https://www.energomonitor.com
https://www.develcoproducts.com
https://www.openmuc.org
https://www.influxdata.com/products/influxdb-overview
https://www.influxdata.com/products/influxdb-overview
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SPARQL endpoint where data can be queried using SPARQL queries. Namely, an Openlink
Virtuoso (https://virtuoso.openlinksw.com, accessed on 15 March 2021) repository is used.
Both practice and research suggest the use of a graph-based format to capture building data,
nevertheless keeping numeric data explicitly out of the semantic graph for computational
performance reasons [41] and this is the approach followed by RESPOND [42].

Last but not the least, structured data that is massively instantiated but is not time-
based is stored in a relational database. Namely, RESPOND’s relational database system
is MySQL and the results of the forecasting block, the DR message generation block and
optimization block, depicted in the following sections, are all stored in the MySQL database
so that they can be queried asynchronously by other services and RESPOND mobile app.

4.2. Forecasting

Once the collected data is stored in the adequate data repositories, it remains accessible
to be exploited for different purposes. Some of this data, such as the monitored electric
consumption of appliances and the dwelling as a whole, is used for visualization purposes
in the RESPOND mobile app. The stored data can also be exploited by analytic services,
which are the core of this Forecasting block.

Being able to accurately predict the amount of energy to be produced over a period of
time and knowing in advance when demand peaks will occur, can definitely contribute
to better management of their disparity, thus allowing the suggestion of the most suit-
able actions to dwellers. Therefore, in this block, two main services are considered: the
RESPOND Energy Production Forecasting Service and the RESPOND Energy Demand
Forecasting Service.

4.2.1. RESPOND Energy Production Forecasting Service

As a part of the RESPOND project, two different RES are identified—PV panels
installed in Aarhus and the Aran Islands, and STCs in Madrid. Therefore, three different
day-ahead energy production forecasters with hourly time resolution were developed.

The crucial motivation for developing various models for RES production forecast-
ing corresponds to their stochastic nature, most evident in high correlation between the
energy they produce and meteorological conditions. Therefore, day-ahead hourly weather
forecasts for various factors were obtained from Weatherbit (https://www.weatherbit.io/,
accessed on 15 March 2021), with the solar irradiance being the most important one.
Namely, the correlation between solar irradiance and energy production is expected to be
extremely high, which is why it was crucial to include it as an input for the forecaster. Apart
from the irradiance, UV, wind direction and speed, outside temperature, cloud coverage
and relative humidity were also considered as relevant inputs.

Current state-of-the-art solutions for PV production forecast modeling are mainly
focused on various machine learning approaches [43,44] as they achieve the highest per-
formances when there is ample available data. Unlike the Aarhus pilot site where two
larger buildings are sharing a single PV plant and historical data for a period of 2 years was
available, making it possible to proceed with the machine learning approaches, the Aran
Islands pilot consists out of different, geographically separated, houses with each of them
having its own PV production. Furthermore, for more than half of the participant dwellings,
no production measurements were available, which is why the traditional physical model
approach has been chosen for the Aran Islands pilot [45]. Conversely, for STCs, even
though physical approaches are the most frequent ones [22], due to the fact that production
measurements were recorded and stored using the RESPOND platform, a machine learning
approach has been applied here. To sum up, for two, our of the three pilot sites, Aarhus
and Madrid, machine learning models have been used, whilst in the third one, in Aran
Island, Ireland, due to the lack of data, physical models were exploited.

Various machine learning approaches were considered and tested for Aarhus and
Madrid pilot sites, such as support vector regression, linear regression, different neural
network architectures, kNN and random forecast. For each of them, several different

https://virtuoso.openlinksw.com
https://www.weatherbit.io/
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hyperparameters have been testes. For support vector regression, defined to solve dual
problem defined as

min
α,α∗

1
2
(α− α∗)Q(α− α∗) + εeT(α + α∗)− yT(α− α∗)

∣∣∣∣
eT(α−α∗)=0 and 0≤αi ,α∗i ≤1/λ, i=1,...,n

,

with λ being regularization parameter, e vector of all ones, Q positive semidefinite matrix n
by n, where Qij = K(xi, xj) and K(xi, xj) kernel, various regularization factors and kernels
(e.g., linear, sigmoid, radial basis) together with the corresponding parameters were tested.
In case of linear regression, where goal is minimizing following criterion

J = (xW − y)T(xW − y) + λ|W|,

with λ being regularization coefficient, polynomial degree of the input x and regularization
coefficient have been optimized. Furthermore, when neural networks were considered,
number of hidden layers and corresponding number of neurons were optimized. In case
of kNN algorithm, which calculates the distance di between the training sample Xi and
current input X, and reorder them so that

dl1 ≤ dl2 ≤ · · · ≤ dln ,

in order to provide the output as the mean of the training outputs of the k samples which
correspond to the smallest k distances, number of optimal neighbours k has been tested.
Finally, for random forecast algorithm, which estimates the output as the average of the
individual predictions of each tree

y =
1
l

l

∑
i=1

fi(x),

where l is number of trees and fi estimation of the i-th tree, polynomial degree of the input,
number of trees l and their maximal depth has been optimized.

In all cases, optimal hyperparameters were chosen using grid search and the mean
absolute percentage error (MAPE) was used as an indicator of their performance. For fore-
casting energy coming from PV panels, the best models, out of 935 tested, with the low-
est MAPE were random forest models with 50 estimators, whilst for the STC the neural
networks with 2 hidden layers containing 40 and 5 neurons, respectively performed the
best, with more details given in [46]. All of the aforementioned models, together with a
whole production service as a whole, have been developed, trained, tested and compared
in Python, using Keras (https://keras.io/, accessed on 15 March 2021) and sckit-learn
(https://scikit-learn.org/, accessed on 15 March 2021) libraries.

For the Aran Islands, the physical model presented in [47] was employed, as it
required only parameters that can most commonly be found in the corresponding PV cells
data sheets. The main concept of this methodology is to estimate the final production
using the cell temperature, which is estimated using two groups of input parameters:
proprietary PV cells static parameters (longitude, latitude, time zone offset, slope of the PV
cell surface, rated capacity of the PV array, temperature coefficient, surface area of the PV
cell, nominal operating cell temperature) and dynamic ones (global horizontal radiation,
ambient temperature, number of the day in the year, cloud coverage, current time). Hence,
for each Aran house PV array, static parameters were obtained and models were developed
to estimate production of each household.

Finally, after training machine learning models and the development of the physical
one, they have been tested and the obtained MAPEs are as follows: 8.3% for Aarhus
model, 21% for Aran and 6.2% for Madrid. For each of the pilot sites, the MAPE has
been calculated on the neighbourhood level which means that the aggregate profile for
all apartments/houses was provided. For the MAPE calculation, a special batch of the

https://keras.io/
https://scikit-learn.org/
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testing data originating from the pilot sites, has been used. Depending on the pilot and
the corresponding data availability, the duration of the window that has been considered
varies, but it covered from two to six months with different seasons in all three cases
included. Figure 3 illustrates the comparison between the real and the forecasted PV power
generation in Aarhus as an example of estimator performances.
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Figure 3. RESPOND production forecasting service output performance for an Aarhus photovoltaic
(PV) array.

4.2.2. RESPOND Energy Demand Forecasting Service

Alongside with the forecasting of the energy produced from RES, the forecasting
of the energy demand is essential in RESPOND to allow the dispatching of optimal DR
strategies. This service aims at forecasting short-term energy demand, that is, the energy
to be consumed during the next 24 h with an hourly frequency. Focus is placed on the
electric demand at a house level, therefore, a model is built for predicting the short-term
electric consumption of each dwelling participating in the RESPOND project. Afterwards,
these predictions are aggregated to estimate the neighborhood demand prediction, as it is
considered to be an an effective way to mitigate the impact of randomness in the behavior
of different dwellers as found in [48].

This service is based on data-driven predictive models and machine learning algo-
rithms and exploits the data previously collected in the Measurement block. It implements
a multi-step ahead time series forecasting method, which consists in estimating the next h
values {yT+1, ..., yT+h} using the previous values {y1, ..., yT}. Namely, it uses a Multi-Input
Multi-Output (MIMO) Strategy [49].

As for the collection of machine learning algorithms that were tested for the devel-
opment of this service, it included auto regressive integrated moving average (ARIMA),
linear regression, support vector regression and K-Nearest Neighbor (kNN). A set of ex-
planatory input variables were extracted from the time variable. The rationale behind
this decision lies, on the one hand, in the simplicity and explainability provided, and on
the other, in the possibility to impute missing values in the case of sensor failures. These
variables were the day of the month, the month, the hour, the season, the day of the
week and a Boolean variable indicating whether it is a working day or not. Some of
these variables such as the month and the hour, have a cyclical meaning that is not re-
flected in the calculation of distances, therefore, a trigonometric transformation was per-
formed (https://www.avanwyk.com/encoding-cyclical-features-for-deep-learning/, ac-
cessed on 15 March 2021). As a consequence, two variables were obtained from each
transformation: one from the sine and the other from the cosine. Furthermore, before de-
veloping the predictive models, some outlier values were detected and removed.

The RMSE (Root-Mean-Square Error) values obtained with the ARIMA and SARIMA
models were the highest ones amongst the tested ones. The linear regression lowered
this error, although the coefficient of determination (R2) was less than 0.3 in all the fitted
models. The support vector machine-based models lowered even more the forecasting
errors, but their computational cost and the fact that it forecasted electric consumption

https://www.avanwyk.com/encoding-cyclical-features-for-deep-learning/
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values below 0 Wh made it inadequate for the service sought. The best fit was obtained with
the kNN algorithm, and furthermore, the optimal k hyperparameter value was less than 5,
thus improving its performance. Therefore, the RESPOND Energy Demand Forecasting
service has been implemented based on the kNN algorithm. A more detailed explanation of
the whole experimentation is provided in [50]. Figure 4 illustrates the comparison between
the real and the forecasted energy consumption in a Madrid dwelling.
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Figure 4. RESPOND energy demand forecasting service output for a dwelling in Madrid.

Under normal circumstances, the performance of forecasting models degrade over
time due to a change in the environment that violates the models assumptions [51]. How-
ever, the COVID-19 pandemic situation has accentuated this degradation. As a matter of
fact, the daily electric consumption habits of the RESPOND participants have changed
because of the obligation to remain confined due to the state of alarm and restriction
measures. In order to mitigate this performance and ensure that the demand forecast was
accurate enough, a retraining and adaptation strategy has been implemented [52].

All the developed predictive models within the Forecasting block were developed
in R programming language, using the functions within the caret (https://cran.r-project.
org/web/packages/caret, accessed on 15 March 2021) package. They were later exported
in the form of .rds files and deployed in an R server within the RESPOND platform and
their results were stored in a MySQL database. Here, they remained available for their
visualization in the RESPOND mobile app, as well as for their further exploitation by the
Optimization block.

4.3. Demand Response Messages

As previously mentioned, DR implementations have already existed in the industrial
sector for some time. The concept, with minor modifications, essentially adheres to the
following structure: an aggregator or similar intermediary entity makes arrangements
with industrial users that can offer flexibility in terms of utilizing a set of large consuming
processes or machines. The frequency, duration and intensity of allowed load modifications
coming from these consumers is contracted, meaning that the industrial user is expected
to, upon request or at certain predefined times, allow for power required by the mentioned
processes and machines to either be significantly decreased or increased. This mechanism is
most commonly used for load reduction with large-scale heaters and chillers for easing the
burden on the grid during peak hours. However, similar mechanisms can also be employed
to balance unexpected production spikes, especially in systems that incorporate large
capacities of renewable generation. In return for the provided flexibility, the aggregator
offers monetary compensation while it also receives compensation from the grid-side
operators for improving the stability of the system.

On the other hand, despite its notable potential contribution [53], the penetration of
DR programs into the residential sector has been relatively slow, with very few business
expressing interest in this aspect. As a result, standards that define how the necessary
load modifications should be formulated for domestic users are arguably scarce. Hence,

https://cran.r-project.org/web/packages/caret
https://cran.r-project.org/web/packages/caret
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the methodology adopted by the RESPOND AI system offers flexibility in terms defining
these, so-called, DR messages. These messages are envisioned to be transmitted by a
grid-responsible entity (e.g., aggregator) and sent to the system so that it knows in which
way it would be beneficial for the grid to reshape the load. Using these so-called messages
as guidance, the optimizer will derive the optimal profile, and afterwards, concrete control
actions will be suggested for dwellers and their appliances. Since there are different ways
in which an aggregator could direct the system towards the necessary changes, two types
of DR messages are considered: implicit and explicit.

4.3.1. Implicit DR Messages

The term implicit DR is used within the context of the RESPOND AI system to refer
to instances where the optimal demand profile is inferred without specifically defining
the amounts by which the load should be modified at different times. As opposed to
that approach, indirect constraints are provided that guide the model towards the desired
behaviour. One example of such DR applications are cases where the dwellers are offered
tariffs from their respective energy service companies (ESCOs) that utilize variable energy
prices. The most basic and widespread example of such cases are static time of use (ToU)
tariffs that offer lower prices at certain periods of the day. This is done in order to facilitate
the translation of some portion of demand to hours with cheaper energy, so that the strain
on the grid during peak times is reduced. In general, ToU tariffs offer lower prices during
the nighttime and sometimes mid-day periods where most of the dwellers are either
sleeping or at work, so the aggregate demand is generally lower compared with other
periods of the day. Hence, these periods are the most suitable to be occupied by large
consuming appliances (e.g., washing machines, dryers, dishwashers, heaters, boilers, etc.)
that have activations which can be shifted in time. However, there are also more extreme
cases that include critical peak rebate (CPR) and critical peak pricing (CPP) periods where
the energy costs are respectively extremely low or extremely high, thus allowing for more
specific moulding to be performed on the load profile. Such a case was implemented for
a limited time to test the effects of a mixed tariff in the Madrid pilot site with the goal
of observing dweller responses to so called “happy hours” with free energy. In order to
illustrate typical examples for ToU tariff profiles, Figure 5 presents two cases where (a)
shows static ToU prices that are offered with the Megawatt 2.0 DH tariff by Fenie Energia
during the summer period and (b) shows the a more extreme CPR/CPP mixed tariff.
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(a) Static ToU tariff
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(b) Mixed critical peak rebate (CPR) and critical peak
pricing (CPP) tariff

Figure 5. An example of time of use (ToU) tariffs that can be utilized for implicit demand response (DR).

4.3.2. Explicit DR Messages

Another option for steering the demand towards the desired values is to explicitly
define the necessary corrections. Namely, since the system includes both production and
demand forecasting services, both the supply and demand curves are known before the
optimization is activated. By analyzing their relation for any major disparities, or by
considering them separately, an aggregator-like entity or balance-responsible party can,
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using its expert inputs, determine precisely the demand that should be adjusted. In order
to provide support for such mechanisms, the RESPOND AI system envisions so-called
explicit DR messages that influence the optimization output. Namely, in accordance with
the temporal resolution and horizon dictated by other services in the control loop, explicit
DR messages adhere to a similar format as other variables in the system.

Table 1 illustrates an example of an explicitly defined request for demand alterations,
organized on an hourly basis for each considered carrier. In this format, every field of a
message depicts an amount of energy by which the forecasted profile should be modified
in the appropriate time frame to achieve a certain effect. Focusing on values for electric
energy, the defined message given in the aforementioned table requests to increase the
load during the mid-day period between 11:00 and 14:00 (this is the time of day when peak
production from PV panels can be expected), while also encoding the reduction of demand
values during the afternoon period between 17:00 and 21:00.

Table 1. An example of an explicit DR message for load adjustment.

Hour of Day 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

electric [kWh] 0 0 0 0 0 0 0 0 0 0 0 +2.25 +1.5 +1.25 0 0 0 −1.3 −0.8 −1 −1.8 0 0 0
thermal [kWh] 0 0 0 0 0 0 −5 −8 −3 −4 0 0 +6 +8.5 +9.5 +3 0 0 0 0 0 0 0 0

Depending on locally available RES installations, typical user behaviour, forecasted
profiles, and other relevant constraints, this format can be utilized to achieve various
effects in terms of load reshaping. However, the optimization model that will be described
in more detail in the following sections natively takes into account all factors that affect
cost-effectiveness such as utilization of available RES generation as well as variable pricing.
Therefore, in the context of the proposed platform, explicit DR messages can be more
effectively utilized as means of enforcing demand changes that go against the factors that
naturally exist. For example, this may be the case when there is a planned outage or
necessary infrastructure maintenance and in these cases a load reduction event can be
scheduled beforehand at the appropriate time to help reduce the demand levels. For the
example given in Table 1, specifically the electric domain, the corresponding requested
load modifications are visualized in Figure 6a, and the resulting desired aggregate electric
load profile with these modifications incorporated are shown in Figure 6b.
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Figure 6. An example of an explicit DR event defined for electric power of multiple residential consumers (orange signifies
energy to be removed wile green signifies energy to be added) and the ideal resulting aggregate profile.

Formally speaking, the defined DR messages are converted into load modifications
represented by a specific variable ∆LDR. In combination with the forecasted demand profile
Lforecast, it defines the required load profile Lrequired as given by

Lrequired(k) = Lforecast(k) + ∆LDR(k).
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This required profile will be later exploited in the Optimization block where the
optimal load profile will be penalized for deviating from the required one, as described in
the following section.

4.4. Optimization

The Optimization block is aimed at converting forecasted energy production and
demand and custom grid-related requests into an optimal demand curve for an entire
neighborhood. This curve can later be used to generate both non-user-specific and user-
specific suggestions to modify the demand aiming at mitigating potential problems with
grid stability and responding to requests from a (virtual) DR aggregator. Namely, it
takes into consideration day-ahead energy prices (collected in the Measurement block),
the forecasted renewable production and the predicted demands from individual users
(both of them generated in the Forecasting block) aggregated into a neighborhood profile
as well as load modification requirements (given in the DR message generation block).
Using supposed demand flexibility, the optimizer shifts the demand in intensity and in
time to generate a profile that is the most cost-effective for dwellers and most stable for the
grid operator.

This optimization model is developed upon the core constraints that govern the way
the Energy Hub is used to model energy transmission and transformation, as described
in [54]. The corresponding MILP model that is used for the optimization is defined by
laying out all the constraints and bounds in an appropriate matrix form such as given by

Aeqx = beq ∧ Aineqx ≤ bineq ∧ lb ≤ x ∧ ub,

with an objective function defined as J = f Tx. Since the proposed architecture of the
RESPOND system regards the demand as an aggregated value equal to a sum of individual
consumption of different dwellers, the demand is also managed and optimized in an
aggregated form. In order to do so, and considering that in energy management solutions
that employ DR, either the required demand curve is known before hand or that the
modifications that should be made to the demand profile are given some time ahead, a key
variable defined as the demand deviation ∆L is given by

∆L(k) = Lrequired(k)− L(k),

where L is the optimized (output) demand and Lrequired is the profile that is desirable to
achieve. The demand variable L is limited to values in the range of the forecasted value
Lforecasted(k) plus/minus a predefined flexibility margin which is (for the following use
case demonstrations) set to be 20% of the forecasted value at the considered time stamp.
This elasticity band is used to model potential demand flexibility that can be achieved with
user interaction and suggestions as given by [55], but it can also be adapted to different
user habits if they display more complex behavioral patterns. With the main goal of the
optimization being to provide a demand curve that is as close as possible to the required
one while ensuring cost-effectiveness for end users, the objective function is constructed
as a linear combination depicting monetary parameters (import energy costs and export
energy rebates) and penalized values of these demand deltas. In order to do so, its values
must be split into positive instances ∆L+(k) and negative instances ∆L−(k), that is,

∆L+(k) ≥ 0 ∧ ∆L−(k) ≤ 0,

so that each one of these variables can be penalized in the criterion function with positive
and negative values, respectively. This is achieved by redefining the demand delta as

∆L(k) = ∆L+(k) + ∆L−(k) = Lrequired(k)− L(k).
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However, in order to force these newly introduced values to equal positive and
negative deviations, a set of constraints is introduced with

∆L+(k) ≤ +I(∆L+(k)) · ∆L+
max(k)

∆L−(k) ≥ −I(∆L−(k)) · ∆L−max(k),

that limits these variables to the absolute maximum positive deviation ∆L+
max(k) and

maximum absolute negative deviation ∆L−max(k), but also introduces the indicator variables
I(∆L+(k)) and I(∆L−(k)) that should equal 1 only if the appropriate deviation exists in
time step k. Furthermore, the previously mentioned maximum deviations are determined
based on the maximum demand flexibility while the indicator variables are forced to take
values from the limited set of {0, 1} by denoting them as Boolean variables in the MILP
model and also adding a constraint

I(∆L+(k)) + I(∆L−(k)) ≤ 1.

Finally, in order not to allow the engine to reduce all demands to the minimum
possible value, an integral constraint is added with

k2

∑
k=k1

L(k) =
k2

∑
k=k1

Lforecast(k),

where k1 and k2 represent the beginning and ending indices of a sliding window for the
optimization. With the limits of these windows set to values which are 24 h apart, this
constraint essentially ensures that the total energy spent on a daily basis in accordance with
the optimal profile is the same as would be the case with the forecasted profile. In other
words, the strength of load modifications is implicitly limited to intra-day reallocation.

The criterion of the optimization problem is constructed as a weighted sum with two
parts, one corresponding to the operational costs for end users (i.e., difference between the
import revenue and export profits) and penalty for the load deviations (in accordance with
previously defined DR events). Concretely, the criterion is formulated as

J = ∑
i

∑
k

(
αi(k)Pin(i, k) + βi(k)Pexp(i, k)

)
+ ∑

i
∑
k

(
w+

DR∆L+(i, k) + w−DR∆L−(i, k)
)
,

where αi(k) and βi(k) denote the instantaneous energy prices for imports (Pin(i, k)) and
exports (Pexp(i, k)) of energy carrier i at time step k while w+

DR and w−DR are the previously
mentioned positive deviation and negative deviation penalization factors used for includ-
ing the DR event in the criterion. By setting different values of wDR parameters, the impor-
tance of the load’s adherence to the profile requested by explicitly defined DR events can be
weighted against the minimization of costs for the neighbourhood, and reevaluated based
on each individual application use case. As can be observed by its structure, this criterion
is formulated as a linear combination between a set of constants and variables, and as such
can be optimized using well-known and efficient state-of-the-art algorithms for these types
of MILP problems with their essentials described in [56] and implemented as, for example,
IBM’s ILOG CPLEX (https://www.ibm.com/products/ilog-cplex-optimization-studio,
accessed on 15 March 2021) as the arguably most prominent commercial solution or COIN-
OR’s open source branch-and-cut (CBC) solver (https://www.coin-or.org/, accessed on 15
March 2021).

With a set of miscellaneous constraints, the aforementioned set of equations and the
given objective function form a MILP optimization problem implemented by the RESPOND
approach. An example of demand reallocation that can be achieved with the help of the
optimization will be given in Section 5.

https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.coin-or.org/
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4.5. Control

Once the optimal energy profile is generated for each neighborhood, some specific
control actions need to be performed by the dwellers in order to achieve such a profile. It
has been demonstrated that the potential in the flexibility of appliances’ operation and time
of use allows them to be exploited for matching the needs of specific DR programs [57].
Therefore, the main goal of the Control block is to translate the optimal energy demand
profile into specific DR events mainly related to the scheduling of appliances.

Balancing energy efficiency and user satisfaction is another unresolved DR chal-
lenge [58], therefore, the proposed corrective actions are aimed to generate the least dis-
turbance in the every-day operations of dwellers. However, generally, consumers are
not willing to change their habits and daily routines in order to enable smart appliance
operation and they want to be able to retain full control over their appliances if desired [59].
To avoid this adoption barrier, dwellers specify a set of preferences with regards to the
different events and situations involved in DR events. These preferences include:

• The type of actions allowed by each dweller (e.g., switch on or switch off);
• The appliances upon which these actions may be performed (e.g., a dishwasher or a

washing machine);
• The periods of time when these actions may be allowed (e.g., from 19:00 onwards);
• The type of notifications preferred by dwellers (e.g., informative, prescriptive or none

of them).

The set of preferences for each dweller are specified in the RESPOND mobile app
and stored in the MySQL database. Since dweller preferences may be subject to changes
throughout time, they may easily modify them whenever they want in the RESPOND
mobile app too.

The Control block is aimed at translating the optimal profiles generated from the
Optimization block into the actual control actions. For the electric domain, this block has
focused on generating the scheduling of appliance usage (e.g., turning the dishwasher on
at a certain time) implementing an heuristic optimization algorithm. More specifically,
the tabu search (TS) algorithm is used, which aims to solve combinatorial or non-linear
optimization problems through memory and so called tabu restrictions [60]. The actual
actions proposed by this heuristics service are guided by the preferences set for each
dwelling, specially the periods of time when the applications may be activated and they
can be both user-specific or mass recommendations for all the neighbors.

The goal of TS is to get closer to the optimal solution while avoiding to get locked in
local optima. To do so, TS uses memory to store old movements, prioritizing other kind of
movements (similar solutions) that allows the algorithm to reach different solutions from
the solutions search space. The algorithm iterates through several solutions (X), moving
from one solution s to another solution s′ from the neighborhood system N(s) of s. The new
movements aim to improve the current best solution evaluating their objective function
value ( f (s)), in order to minimize the mentioned best value.

The actual scheduling problem can be mathematically represented as a combinatorial
optimization problem, where there is a discrete solution search space, that is, the number
of possible solutions or feasible schedules is finite. The objective is to minimize the sum of
the difference between the optimal demand profile (ok) and the total demand (rk) at each
moment of time (k), that is, to adapt the use of appliances in such a way that the aimed
demand (consumption of all appliances (piu ) plus the fixed demand (zk,u) of each dwelling
(u)) is as close as possible to the optimal demand:

min
X

fobjective =
K

∑
k=1

∣∣∣∣∣
(

U

∑
u=1

(
Iu

∑
iu=1

(
piu × xk

iu

)
+ zk,u

)
− ok

)∣∣∣∣∣.
The solution is represented as a XIu ,K matrix where Iu is the number of appliances

from u dwelling and K is the number of moments of time represented. Each variable xk
iu

from the solution matrix is set to 1 if iu appliance should be on, and 0 otherwise.
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The algorithm tries to fulfill several restrictions related to consumption limits for each
dwelling, and also about the solution representation (i.e., how to build a solution by 1’s
and 0’s). An example of the underlining appliance schedule is illustrated in Figure 7a,
which depicts how the algorithm attempts to achieve a profile close to the optimal one by
combining fixed demand with shiftable appliances. Once the recommended control actions
are calculated, they are sent to the dwellers in the form of a mobile app notification, as it
can be seen in Figure 7b.
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Figure 7. An example of the optimization process for appliance activations and resulting notification

5. Use Case Demonstration: Implicit DR in Madrid

The main use case that will be analyzed to determine to what extent the dwellers
can respond to different conditions and display flexibility in their power consumption,
is the application and effects of price-based implicit DR events that were implemented
in the Madrid pilot site. Namely, the final two years of the RESPOND project have been
split into two periods, the baseline period (1 November 2018–31 October 2019) and the
validation period (1 November 2019–31 October 2020). The former was used to determine
the reference behaviour of the dwellers in terms of energy consumption (typical demand
profile, typical total consumed energy, etc.). During the latter period, the dwellers that have
signed contracts with Fenie Energia have been switched between different experimental
pricing tariffs and changes in their behaviour were recorded.

With different dwellings being contracted to different plans and each one having its
own higher electricity price (P1) and lower electricity price (P2) values, the corresponding
prices for the analyzed dwellings, applicable for both the baseline and validation periods,
are given in Table 2. During the baseline period, the dwellings considered in this analysis
were contracted to ToU tariffs that follow the shape illustrated in Figure 5a with appropriate
P1 and P2 values from Table 2. On the other hand, Table 3 shows how the pricing tariffs have
varied only during the validation period. Furthermore, different cases employ different
periods of the day when energy is offered for free. Although minor differences between
price values for pilot dwellings do exist, since all the dwellings are subject to the same tariff
profile from Table 3 at a given time, the differences can be neglected when considering all
dwellings jointly.

Table 2. Electric energy prices for experimental tariffs in [EUR/kWh].

Household Codename P1 (w/o tax) P2 (w/o tax) P1 (w/ tax) P2 (w/ tax)

M1 0.157 0.086 0.167 0.091
M3 0.157 0.082 0.167 0.087

M0, M2, M4, M6, M10, M12 0.149 0.078 0.158 0.083
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Table 3. Different experimental pricing tariff profiles.

Tariff Start Finish 00-12 12-13 13-15 15-16 16-17 17-22 22-23 23-00

Case 1 2019-11-01 2020-03-31 0 P1 P1 P1 P1 P1 0 0
Case 2 2020-04-01 2020-04-26 0 0 P1 P1 P1 P1 P1 0
Case 3 2020-04-27 2020-05-31 P2 P2 P1 0 P1 P1 0 P1
Case 4 2020-06-01 2020-08-31 P2 P2 P1 0 0 P1 0 0

The first two tariff cases (Case 1 and Case 2) have not resulted in major modifications
to the load profile as the periods with free energy correspond to periods when energy was
also cheaper before. However, this had prompted the inclusion of the latter two tariff cases
(Case 3 and Case 4) where the dwellers have been offered the so-called “happy hours”
or, in other words, periods during the afternoon when they can consume energy for free.
This experiment was designed specifically with the goal of providing a notable incentive
for displayed demand flexibility, and therefore, testing if such flexibility can be induced.
With the Case 3 tariff initially offering two short one-hour-long periods with free energy,
it was later extended to include two two-hour-long “happy hour” periods, as defined by
Case 4 tariff. This case will be specifically analyzed in the following paragraphs to illustrate
the observed effects of implicit DR.

In order to provide the data of the best quality for both baseline and validation
periods, logs obtained by the RESPOND system have been employed to extract hourly
electric energy consumption. The resulting values have been manually curated so that only
day-long logs with continues values remain, meaning that the days with periods in which
the corresponding measurements do not follow the typical demand curve (e.g., values are
constant or only display white noise) have been removed. By doing this, only the days when
the dwellers have been actively using their appliances have been considered. Given the
length of the different tariff cases during the validation period, it was decided that the best
analysis could be provided by comparing the same month of two different years. A month-
long period is considered long enough to provide enough data for meaningful analysis,
but still short enough so that the expected behaviour of the dwellers can be comparable,
given the presumed similar average meteorological conditions, holidays, and so forth.
Therefore, the baseline month for in depth analysis was selected to be June 2019 while the
validation month was selected to be June 2020. The resulting data contains the following
number of day-long sets of hourly energy consumption: 132 for the baseline period and
241 for the validation period, further separated into working days and nonworking days
(weekends or public holidays). Since related literature generally regards working days
and nonworking days as different categories for energy consumption analysis, and since
working days were more frequent in the curated data, the use case that will be elaborated
next will focus only on data corresponding to working days.

The extracted values are evaluated jointly for all dwellings, meaning that if the ex-
tracted data were to be considered as a table, each row would correspond to one day-long
record for a given house on a given day, while the columns would correspond to hours of a
day. In order to illustrate the distribution of total hourly energy consumption, a number
of metrics have been evaluated. Let Lk denote the sample distribution of individual data
observations x that corresponds to consumption between k and k + 1 hours and FLk (x)
denote the corresponding cumulative distribution function (CDF). If defined as such, ob-
servations of Lk are given in column k of the data table. Then, for each k a set of quartiles is
calculated using the following definition

qn(Lk) = p ⇐⇒ FLk (x) = P(x ≤ p) = n · 25%,

where the ordinal constant is chosen as n ∈ {1, 2, 3} and therefore corresponds to the 25th,
50th (median) and 75th percentile. Figure 8 illustrates how these metrics change on an
hourly basis for the chosen baseline month and validation month. The first observation
that can be made is that the difference in tariffs appear to have made a significant impact
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on the shape of the third quartile of the consumption curves. In other words, the two
peaks between 12:00 and 15:00 and between 19:00 and 22:00 observable for the q3(t)
curve in Figure 8a appear to have been substituted by a single, more pronounced peak,
in the corresponding curve from Figure 8b between 15:00 and 17:00, exactly when the
“happy hours” are placed. In addition, by subtracting the two curves that depict median
hourly consumption

∆q2(k) = q2-valid(k)− q2-base(k)

set of median consumption deltas is obtained and depicted in Figure 9a. As is clearly
shown here, the dwellers exhibited a clear bias towards lower energy consumption during
the validation period when compared to the baseline one with the average median con-
sumption delta equaling ∆q2 = −82.2 W. However, by centering the median consumption
deltas with the average median consumption delta

∆q2center(k) = ∆q2(k)− ∆q2 = ∆q2(k)−
1
24

24

∑
k=1

∆q2(k),

a set of centered deltas is obtained and is illustrated in Figure 9b. Here it can be observed
that the most notable delta when compared to the average are between 14:00 and 17:00 which
corresponds to the “happy hour” period. As was expected, this increase in consumption is not
a result of the need for additional energy (which is also clear from Figure 8a) but rather the
temporal relocation of existing consumption, with the periods mostly affected by overall
demand decrease between 12:00 and 15:00.
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Figure 8. Comparison between the distributions of hourly energy consumptions.
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Figure 9. Deltas between median hourly electric energy consumption.

Going back to the absolute changes from Figure 9a, even though, on average, the hourly
consumption during the validation month is lower, the difference is positive at ∆q2(15) =
93.2 W between 15:00 and 16:00, further illustrating the notable effects that are made to the
demand allocation by the introduction of the “happy hours” with free energy.
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However, observing and analyzing absolute changes in power consumption between
different periods of time usually requires much more complex means of normalization that
would take into account different factors that influence the overall consumption such as
meteorological conditions. As the available data in this regard is relatively limited, a much
more informative analysis can be conducted when observing the differences in demand
profiles. In order to do this, the ratio of median energy consumed for each hour with
respect to the total daily consumption is calculated as

q2prof-i (k) =
q2−i(k)

∑24
k=1 q2−i(k)

,

for i ∈ {base, valid} and is depicted in Figure 10. As this graph clearly shows, during the
nighttime and early morning periods, where there are no modifications to the tariff, no
significant differences can be observed between the demand profiles.
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Figure 10. Visual comparison between hourly demand profiles.

However, a significant shift is to be noted for the peak period that was between 12:00
and 14:00 and appears to have moved to between 14:00 and 16:00 during the validation
month. Furthermore, a slight decrease of consumption between 16:00 and 20:00 is also
evident during the period with higher prices, as well as an increase in the allocated demand
ratio between 22:00 and 00:00 which, again, corresponds to hours with free energy. Table 4
shows a section of most notable demand profile values as well as their absolute and relative
differences defined as

∆q2prof(k) = q2prof-valid(k)− q2prof-base(k) and δq2prof(k) = ∆q2prof(k)/q2prof-base(k).

These values once again illustrate the impact that is made by the “happy hours” on the
shape of the energy profile, but also show that, given proper incentives, dwellers can
display significantly more flexibility than was originally presumed.

Table 4. Most notable differences between hourly demand profiles.

Variable 12-13 13-14 14-15 15-16 16-17 18-19 19-20 22-23 23-00

q2prof-base(k) [%] 5.65 6.54 5.19 4.15 4.45 4.37 4.45 6.32 5.72
q2prof-valid(k) [%] 3.78 4.57 6.55 7.19 5.59 3.53 3.42 7.68 6.61

∆q2prof(k) [%] −1.87 −1.97 +1.37 +3.05 +1.14 −0.85 −1.03 +1.36 +0.89
δq2prof(k) [%] −33 −30 +26 +74 +26 −19 −23 +22 +16

6. Conclusions

With buildings accounting for more than a third of global energy use, the imple-
mentation of proper operation strategies has shown great potential in terms of achieving
significant energy savings. The residential sector is specially promising, as it is responsi-
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ble for around the 25% of energy usage. Furthermore, DR can influence customers’ use
of electricity in effective ways, but their implementation in the residential sector is not
straightforward. In this regard, RESPOND aims to bring DR programs to neighbourhoods
across Europe by solving the solving the energy demand optimization considering the man-
agement of collectively shared RES generation as well as variable pricing tariffs, specific
demand flexibility constraints and dwellers comfort.

Achieving such a multi-objective problem is complex and to that end, RESPOND
proposes an AI system that comprises five blocks—Measurement, Forecasting, Demand
Response, Optimization and Control. The Measurement block aims at acquiring and storing
all the necessary energy, ambient and other relevant data. The Forecasting block focuses
on exploiting this data to forecast the short-term generation of PV panels and STCs as
well as the energy demand at a dwelling and neighborhood level. The Demand Response
block is responsible for generating the messages that request load modifications. This
information is later on used by the Optimization block to calculate the optimal demand
curve. Finally, the Control block generates and suggests the adequate corrective actions to
dwellers in order to achieve this optimal demand curve while minimizing the disruption
of their daily habits.

The implementation of this AI system has been demonstrated in a real-world use case
involving electric loads and implicit DR. The benefits of using such a system are two-fold.
The dwellers are informed of what is the best way to make use of lower energy prices and
local generation while the grid has been offered a notable level of demand flexibility. In the
discussed study, two key findings have been observed: on the one hand, with a ToU tariff
that is designed in accordance with the schedule that the residents are already used to, even
with extremely low prices, no major changes to the load profile should be expected. On the
other hand, when a notable incentive is offered in contrast to the existing habits, such as
free energy in two-hour windows adjacent to afternoon peak periods, the dwellers have
shown the willingness to optimize and shift their load in line with newly defined “happy
hours”. Furthermore, it also demonstrated that, given the proper incentives, dwellers
can display significantly more flexibility in terms of load elasticity than was originally
often presumed. Analyzing the daily energy share used on an hour-by-hour basis has
indicated that previous peak periods exhibit a decrease of around one third (e.g., energy
spent between 12:00 and 13:00 dropped from 5.6% to 3.8% of the daily total) while “happy
hours” saw an increase in energy share of almost double (e.g., energy spent between 15:00
and 16:00 increased from 4.2% to a notable 7.2% of the daily total). These results show a
high potential of temporal load reallocation for further developments of DR programs in
the residential sector.
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