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TEXHUYKU EJIABOPAT

IIpoGJsieM KOjH ce TEXHUYKUM pelieheM peliaBa:

Introduction

High emissions of greenhouse gases linked to imminent climate change and depletion of fossil
fuels for power generation have necessitated the search for alternative solutions for the energy
supply. For the case of islands, this situation is exaggerated due to often autonomous electricity
grids and difficulty in balancing supply and demand. To tackle these issues, renewable energy
sources (RES) coupled with battery or other storage could offer a cost-effective and sustainable
energy supply for both large and small islandic energy systems. At the same time, many islands
also have economies based on touristic activities that are usually seasonal in nature. This short-
term influx of visitors often means that islands’ energy systems must be greatly over-
dimensioned from what would be needed if only considering permanent residents. This is
coupled with the other sustainability issues that local energy planners must also take into
consideration, such as the need for the decarbonization of energy systems, the impacts on local
communities and groups of these new systems as well as the economic feasibility of the
emerging energy projects.

Put succinctly, energy planning for the decarbonization of islands necessitates the following:

e RES coupled with energy storage (supply side)
e Modern smart grids (energy transport infrastructure)
e Optimized energy scenarios (energy planning)

e Demand side management strategies (user perspective, individual and collective
behavior).

Problem definition

It can be shown from the literature that many researchers of island energy planning have placed
a significant emphasis on techno-economic evaluations and/or focus on a single island, or a
small chain of nearby islands. This has sometimes left social and, to a lesser extent,
environmental questions relatively unanswered and only provided island planners parts of the
picture they need when making their decisions. In that way, planners could be unsure of
whether or not the developed solutions are applicable to their island’s geographic, social,
technical and economic circumstances. The development of an integrated energy planning
decarbonization platform and the results from its application to a number of diverse islands
could assist them in planning for the energy futures of their islands.

Crame pemieHOCTH TOT NMPodJaemMa y cBeTy:

State of the art solutions

The unique and varying set of problems on geographic islands has led to a range of different
approaches, scopes and goals having been used in literature to account for the special



circumstances in island energy planning. Many researchers have employed methods focused
on techno-economic optimization to develop and plan energy systems for islands. The cost
optimal sizing of solar PV and battery systems on an isolated island in India is studied in [1] to
determine if such systems could potentially serve as economical and technically reliable
alternatives to fossil fuel-based power generation. An optimal energy mixed is determined
using techno-economic analysis on the Italian island of Lampedusa in [2] and finds that when
40% of the island’s current demand is replaced with renewable production the costs for
electricity production could be reduced. The potential for economic savings from a hybrid
solar-diesel power generation system in comparison to a diesel only system for an isolated
island in the Philippines is studied in [3]. In [4], the potential for developing a reliable and
least-cost RES-based electrification systems is assessed for a number of un-electrified islands
in the Philippines.

The techno-economic feasibility of integrating differing amounts of renewables into Russia’s
Popova Island’s energy system is considered in [5] and it is found that a penetration shares
above approximately 46% cause system costs to begin to increase and finds a 95% penetration
to be nearly three times as costly. In [6], the techno-economic impacts of the use of electric
vehicles on the Portuguese island of Porto Santo’s is investigated and finds decreased periods
of renewable curtailment and of thermal plant operation. Six geographically varied islands are
investigated in [7] for how their cost-optimal hybrid renewable energy system configurations’
change with increasing renewable energy production, to find the final optimal RES penetration
ranges for each of the islands. The system’s reliability and the cost savings of a number of
combinations of hybrid solar PV and wind power projects coupled with battery storage on an
island in China are presented in [8]. The technical, economic and environmentally optimal
configurations of the Italian island of Favignana’s energy system with high renewable
penetration are assessed in [9]. The benefits of sector coupling to such a system are also
considered in [10] where the optimal energy scenarios on the same island, including both
battery and hydrogen storage, are techno-economically determined and environmentally
analyzed. The seasonal variability in population, typical to many islands, is considered in [11],
where a range of hybrid RES and diesel projects are evaluated with the goal of finding a cost
optimized energy system configuration for a resort island in Malaysia. A methodology seeking
to explore the potential of RES integration is applied on the island of Cozumel in Mexico in
[12], where techno-economically optimized 50% and 100% renewable hybrid electrical
systems coupled with batteries are evaluated. A techno-economic optimization is done to
determine the sizing of renewable hybrid power systems both with and without storage for the
Nicaraguan island of Ometepe in [13]. The economic and technical feasibility of roof mounted
solar PV systems in the Maldives is analyzed in [14], while the environmental benefits gained
by the reduced usage of diesel generation are also assessed. A stepped decarbonization of
Jamaica using renewables and battery storage is examined using technical and cost perspectives
in [15] to find if such a system could eventually phase out fossil fuels from the island’s energy
production in an economical manner. In [16] the amount of wind and solar PV generation that
can be technically and economically integrated on the Japanese islands of Teuri and Yagishiri
energy grids without the usage batteries is investigated and found to be nearly 20%. Renewable
energy scenarios for the entirety of the Canary Island chain, including transport, heating, and
interconnections between the islands are techno-economically analyzed in [17] to determine if
the islands are able to achieve 100% renewable energy production by 2050 at a lower price
than the islands’ current fossil fuel dependent energy system. A study of different renewable
energy system scenarios on the Island of La Gomera in the Canary Islands in [18] seeks to
determine if 100% sustainable energy systems on islands are technically and economically
feasible by 2030. On the island of Gran Canaria, a cross-sectoral method is applied in [19] and



different transition strategies are used to conclude that a nearly 76% renewable energy system
could be achieved.

Onuc TEXHUYKOT pellieha ¢a KApaKTepUCTHKaMa, YK/by4uyjyhu nparehe
WIycTpaumje U TeXHUUYKe LpTexe:

Proposed Algorithm

The first step of the proposed REACT-DECARB platform is concerned with the gathering of
the data that is then used in the creation of energy scenarios. This process requires a significant
amount of information on both the location where potential energy projects are to be deployed
and about the projects themselves. That is specifically important for geographic islands given
the often-high seasonality in electricity demand and the increased costs of transporting
technological components and personnel to them. At the same time, a number of other
parameters must be evaluated. These are both technical in nature (is there existing
infrastructure), as well as legal or social (is the area protected in some way). Once energy
potential and limitations have been assessed the technologies feasible for deployment can be
determined.

The next step entails the creation of technologically feasible scenarios for the island being
reviewed. To be most effective, this step requires a technical configuration of systems which
are optimized to the specifics of the island and its energy needs. There are a number of
modelling and planning tools that can be used to assist in determining energy project techno-
economic feasibility and there is no perfect model for all cases. These tools have differing
purposes, approaches, methodologies, scales and time steps that provide different
functionalities suited for differing applications.

Subsequently, the REACT-DECARB platform comprises an analysis part that includes an
economic, sensitivity and risk analysis as well as an environmental and social dimension
analysis. In this system, the LCOE is used for the economic analyses. The LCOE tool is
commonly used for economic analysis to compare electricity generation technologies and
systems. The calculation of LCOE for a project is based on the energy produced by it over its
operational lifetime and the life-cycle costs. LCOE determines the minimum a project must
receive for a unit of electricity produced to cover its generation lifetime costs. A project’s
investment cost is the total cost of the construction of its components while the total annual
cost can include items such as fuel and operations & maintenance costs. The total annual costs
and annual electricity generation, generally including degradation of production, are
discounted each year to the present value as to make them comparable. There are many
different methods for calculating LCOE and two of the most common are critically assessed in
[20].

Finally, this approach, illustrated in Figure 1, uses Monte Carlo analysis (MCA) to consider
the uncertainties involved when calculating an economic indicator, such as LCOE. MCA uses
random sampling from a set of inputs to perform repeated iterations of a process or calculation
to provide a distribution of the potential results and the likelihood a range of results will occur.
By providing a distribution rather than a single value, the user is better able to assess the
uncertainties around indicators. These indicators can be costs, electricity prices, energy
production and weather variations. MCA has been used in techno-economic analyses for many
years to fill this role.
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Figure 1 - The REACT-DECARB platform for islands: structure and flow of analysis

Use case demonstration

Eight EU islands were considered in total for showcasing the operation of the proposed
algorithm. All of these islands have differing sizes and have varying local climates. All were
evaluated for their tangible renewable energy potentials based on their specific environmental
and regulatory conditions and Table 1 shows the key characteristics of each island. Of these,
the Spanish island of La Graciosa and Greek island Lesvos were selected specifically to
demonstrate the workflow of the presented methodology.

Located in the Atlantic Ocean off the west coast of Africa in the Canary Island chain, La
Graciosa has a permanent population of about 800 individuals and is separated from the larger
island of Lanzarote by only, at its closest point, one kilometer. The island is connected to
Lanzarote with a 1 MW underwater cable which provides most of the island’s electricity. The
island’s economy is based primarily on fishing and tourism. La Graciosa has favorable
conditions for both wind and solar power but the expansion of both is limited by most of the
island’s designation as a UNESCO protected site. Some solar PV technology is in place on the
island but these installations are limited to rooftops. By minimizing operational costs for
various site configurations using mixed-integer linear programming, a list of suitable scenarios
was obtained. Specifically, “Scenario I”, defined by a total installation capacity of 500 kKW, of

photovoltaic generation coupled with an electric battery sized at 400 kWh of maximum state
of charge, will be demonstrated.

On the other hand, the island of Lesvos is located in the northeast Aegean Sea and is the third
largest of the Greek islands. The island has a permanent population of 110,000 inhabitants and
its economy is based on agriculture, farming, handcraft and tourism. The island has no
connection to a larger grid and this lack of access requires the island to produce its own
electricity using a 75 MW oil-fired thermal facility. Lesvos has favorable conditions for solar,
wind, geothermal and some hydro power and has nearly 9 MW of solar PV capacity installed,
14 MW of wind power installed and some geothermal usage which provides limited heating to
greenhouses. The island currently has a cap on new renewable generation due to grid stability



issues. Again, by using mixed-integer linear programing, a theoretical scenario (“Scenario 11”)
has been devised that includes a mixture of 30 MWp of photovoltaic generation, 30 MWp of
wind generation and a significant storage capacity of 80 MWh.

Table 1 - Use case island summary information

La Graciosa San Pietro Aran Gotland Lesvos Isle of Majorca La Réunion
Islands Wight

Island population (approx.) 800 6200 1300 60,000 110,000 140,000 880,000 860,000
Interconnected Yes Yes Yes Yes No Yes Yes No
Existing grid stability issues No No No Yes Yes Yes Yes No
Koppen-Geiger climate Sub-tropical Hot summer Temp. Warm summer Hot summer Temp. Hot summer  Tropical

classification [50] desert Med. oceanic continental Med. oceanic Med. monsoon
Favourable RES technologies ~ Wind, Solar ~ Wind, Solar, Wind Wind, Solar Wind, Slar, Wind, Wind, Solar  Wind, Solar,

Geothermal Geothermal Solar Geothermal

Area (km?) 29 51 46 3183 1633 380 3640 2511
Scenario targeted 100% RES No No Yes Yes No Yes No No

electricity autonomy

Results

For the economic analysis three methods of LCOE were applied: one on an annuity basis', one
on a non-annuity basis?>, and one based on equity cost with fixed un-degraded annual
production®. Table 2 summarizes the basic economic assumptions used in all scenarios.

Table 2 - Key assumptions used for the economic analysis of all scenarios.

Assumption type Amount Unit
Inflation rate 2 %
Nominal discount rate 10.7 %
Project lifetime 20 Yrs
Solar PV system lifetime 20 Yrs
Solar PV module production degradation 0.5 %/yr
Wind turbine lifetime 20 Yrs
Wind turbine production degradation 1.5 %/yr
Battery system lifetime 15 Yrs
Electricity price increase 2 %,/ yr
Equity share 30 %

A sensitivity analysis is conducted to evaluate the impact that the changes in estimated energy
production and initial investment cost have on the scenarios’ LCOE. Additionally, a risk
analysis is used to determine the distribution of LCOE at a given risk level. The main inputs
needed to perform the economic evaluation of these scenarios include the procurement cost,
the cost of installation of energy generation and storage systems, the operations and

maintenance costs, replacement costs and decommissioning costs.

1. Analysis for La Graciosa

The obtained LCOE values (0.21, 0.19 and 0.19 EUR/kWh) vary slightly between the
three different calculation methods for the same input data but are within a range of
+10% of each other. For La Graciosa Scenario I, the sensitivity of the LCOE to changes

! As used by U.S. National Renewable Energy Laboratory (NREL); https://www.nrel.gov/

2 As used by International Renewable Energy Agency (IRENA); https://www. irena.org/

3 As used in RETScreen, Natural Resources Canada; www.retscreen.net
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in the initial cost of the new system as well as the amount of electricity produced was
tested and the results are presented in Table 3.

The sensitivity analysis above is complemented by a Monte Carlo risk analysis for
Scenario I with a 10% level of risk and 5000 possible variations of the given inputs
used in calculating LCOE within a range of +25% to provide a frequency distribution.
The distribution is shown in Error! Reference source not found. where the height of
each column indicates the frequency which the LCOE values occur within a given range
around the shown value on the x-axis. The distribution shows that LCOE values are
relatively near, but still above, an electricity price of 150 €/ MWh in only about 2% of
the 5000 different input combinations for the scenario.

Table 3 - La Graciosa Scenario | LCOE (€/MWh) sensitivity analysis

- Remove analysis Initial costs v € |:;] [1

Electricity exported to grid = 849142 1031101 1212 060 1395019 1576 978

MWh -30,0% -15,0% 0.0% 15,0% 30,0%

615,89 -20,0% 209,93 2428 272,63 303,99 33534

703,87 -20,0% 183,69 211,12 238,55 265,99 293,42

791,86 -10,0% 163,28 187,66 212,05 236,43 260,82

879,84 00% 146,95 168,90 190,84 21279 234,74

967,83 10,0% 133,59 153,54 17349 19345 21340

1 055,81 20,0% 122,46 140,75 159,04 177,33 195,61
1143,79 30,0% 113,04 129,92 146,80 163,68 180,57
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Figure 2 - La Graciosa Scenario | LCOE (€/MWh) energy production cost distribution

Analysis for Lesvos

The sensitivity of Lesvos Scenario II’s LCOE to changes in the initial cost of the
installed system as well as the amount of electricity produced was also tested. Table 4
shows that, at the initial cost and production assumptions, Lesvos Scenario II’'s LCOE
is unattractive at the given local electricity price of 100 €/ MWh. The sensitivity analysis
shows that, unlike the La Graciosa scenario above, no combination of adjustments to
these key inputs within a range of £30% results in a viable LCOE. The price of the
initial investment would need to be reduced by more than half or the production



increased by more than 90% before the scenario’s LCOE nears the estimated electricity
prices on the island.

The sensitivity analysis above is complemented by an LCOE distribution for Lesvos
Scenario II with the same level of risk and number of variations and uncertainty range
for the variables as described for the La Graciosa case. The distribution is shown in
Figure 3 and finds that none of the LCOE values in any of the 5000 different input
combinations for the scenario approach the local electricity price of 100 €/ MWh.

Table 4 - Lesvos Scenario Il LCOE (€/MWh) sensitivity analysis

- Remove analysis Initial costs ¥ € E]'EJ

Electricity exported to grid ~? 123594713 150 079 295 176 563 876 203 048 458 229 533 039

MWh -30,0% -15,0% 0,0% 15,0% 30,0%

87 690,31 -30,0% 219,96 252,01 284,06 316,11 348,16

100 217,50 -20,0% 192,46 220,51 248,55 276,60 304,64

112 744,69 -10,0% 171,08 196,01 220,94 245,86 270,79

125 271,87 0,0% 153,97 17641 198,84 221,28 243,71

137 799,06 10,0% 139,97 160,37 180,77 201,16 221,56

150 326,25 20,0% 12831 147,00 165,70 184,40 203,09

162 853,44 30,0% 118,44 135,70 152,96 170,21 18747
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Figure 3 - Lesvos Scenario Il LCOE (€/MWh) energy production cost distribution

In general, it can be concluded that, unsurprisingly, local climate had a leading role in
determining which renewable sources were appropriate for potential development but the
specifics of the islands, including topography, population and legal requirements were also
strong determinants. These findings point to the implication that any methodology developed
for the specifics of a single island is likely to need revision before it can be applied to another.
The REACT-DECARB platform was developed with this need for flexibility in mind and can
provide guidance to planners on any island as they fit the framework’s steps to their needs and
abilities.
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ARTICLE INFO ABSTRACT

Keywords: This paper presents REACT-DECARB, an energy planning decarbonisation platform employing renewable energy
Decarbonisaﬁ?“ sources coupled with storage for islands. The paper implements the energy scenario creation and economic
frller((giy planning evaluation steps of the platform on eight geographic islands in seven countries within the EU. Twenty-one
slands

technologically feasible energy scenarios, applicable to the specific conditions of each island, are specified
and their economic assessment via a levelized cost of energy (LCOE) calculation is then performed. The main aim
of this application is to verify the noted steps of the platform as well as to test its flexibility across geographically,
socially and dimensionally disparate islands with various scenario generation methods. The results of the eco-
nomic analysis show a wide variation of LCOE depending primarily on whether full island autonomy is assumed.
In some cases the islands’ scenarios’ costs approach current market prices but are never below them; some
scenarios are, however, below the current price of the island’s thermal generation. The sensitivity and uncer-
tainty of the economic performance results’ and the variables used to calculate them are evaluated and discussed
for two of the islands. The overall analysis and application has shown that the REACT-DECARB platform is
suitable for different islands, regardless of location and size and can be useful for island energy planners.

Levelized cost of energy
Renewable energy, Energy storage

Introduction local energy planners must also take into consideration, such as the need

for the decarbonisation of energy systems, the impacts on local com-

High emissions of greenhouse gases linked to imminent climate
change and depletion of fossil fuels for power generation have necessi-
tated the search for alternative solutions to energy supply. For the case
of islands this situation is exaggerated due to often autonomous elec-
tricity grids and difficulty in balancing supply and demand. To tackle
these issues Renewable Energy Sources (RES) coupled with battery or
other storage could offer a cost-effective and sustainable energy supply
for both large and small islandic energy systems.

At the same time many islands also have economies based on tour-
istic activities that are usually seasonal in nature. This short-term influx
of visitors often means that islands’ energy systems must be greatly over-
dimensioned from what would be needed if only considering permanent
residents [1]. This is coupled with the other sustainability issues that

* Corresponding author.
E-mail address: andrew.barney@geo.uu.se (A. Barney).
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munities and groups of these new systems as well as the economic
feasibility of the emerging energy projects [2].

Put succinctly, energy planning for the decarbonisation of islands
necessitates the following:

RES coupled with energy storage (supply side)

Modern smart grids (energy transport infrastructure)

Optimized energy scenarios (energy planning)

Demand side management strategies (user perspective, individual
and collective behaviour).

To this end, an innovatory energy planning decarbonisation plat-
form, REACT-DECARSB, for islands is developed within the context of the
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REACT! Horizon 2020 EU project and is applied on a number of case
studies.

The REACT-DECARB platform fills the research gap that exists be-
tween selecting and placing energy production technologies on islands,
generating techno-economically optimized energy scenarios, assisting
users via demand response measures and evaluating social perceptions
on potential energy futures. It enables energy planners to develop sce-
narios that include economic, technical, social and environmental
criteria while also assessing risk and allowing them to maintain flexi-
bility in selecting the specific tools that best fit their island’s unique
circumstances for real world projects. The structure and flow of analysis
of the REACT-DECARB platform and the results of a levelized cost of
energy (LCOE) assessment for a number of islands in the EU are pre-
sented in this paper.

The remainder of this article is structured as follows: Chapter 2
presents a literature review on island energy planning and increased RES
penetration research. Chapter 3 presents the steps of the REACT-
DECARB platform applied, including data gathering and energy sce-
nario generation with some of them assuming full island autonomy, as
well as economic and sensitivity and risk analyses. Subsequently,
Chapter 4 introduces the islands studied and the specific energy sce-
narios developed for them along with the economic results for all and
sensitivity and risk analyses for two of the island scenarios. Chapter 5 is
composed of a discussion of the results. Chapter 6 provides the con-
clusions on the paper’s findings.

Literature review

The unique and varying set of problems on geographic islands has led
to a range of different approaches, scopes and goals having been used in
literature to account for the special circumstances in island energy
planning. Many researchers have employed methods focused on techno-
economic optimization to develop and plan energy systems for islands.
The cost optimal sizing of solar PV and battery systems on an isolated
island in India is studied in [3] to determine if such systems could
potentially serve as economical and technically reliable alternatives to
fossil fuel-based power generation. An optimal energy mixed is deter-
mined using techno-economic analysis on the Italian island of Lamp-
edusa in [4] and finds that when 40% of the island’s current demand is
replaced with renewable production the costs for electricity production
could be reduced. The potential for economic savings from a hybrid
solar-diesel power generation system in comparison to a diesel only
system for an isolated island in the Philippines is studied in [5]. In [6],
the potential for developing a reliable and least-cost RES-based electri-
fication systems is assessed for a number of un-electrified islands in the
Philippines.

The techno-economic feasibility of integrating differing amounts of
renewables into Russia’s Popova Island’s energy system is considered in
[7] and it is found that a penetration shares above approximately 46%
cause system costs to begin to increase and finds a 95% penetration to be
nearly three times as costly. In [8] the techno-economic impacts of the
use of electric vehicles on the Portuguese island of Porto Santo’s is
investigated and finds decreased periods of renewable curtailment and
of thermal plant operation. Six geographically varied islands are inves-
tigated in [9] for how their cost-optimal hybrid renewable energy sys-
tem configurations’ change with increasing renewable energy
production, to find the final optimal RES penetration ranges for each of
the islands. The system’s reliability and the cost savings of a number of
combinations of hybrid solar PV and wind power projects coupled with
battery storage on an island in China are presented in [10]. The tech-
nical, economic and environmentally optimal configurations of the
Italian island of Favignana’'s energy system with high renewable

1 Renewable Energy For Self-Sustainable Island Communities (REACT),
https://react2020.eu/
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penetration are assessed in [11]. The benefits of sector coupling to such
a system are also considered in [12] where the optimal energy scenarios
on the same island, including both battery and hydrogen storage, are
techno-economically determined and environmentally analysed. The
seasonal variability in population, typical to many islands, is considered
in [13], where a range of hybrid RES and diesel projects are evaluated
with the goal of finding a cost optimized energy system configuration for
a resort island in Malaysia. A methodology seeking to explore the po-
tential of RES integration is applied on the island of Cozumel in Mexico
in [14], where techno-economically optimized 50% and 100% renew-
able hybrid electrical systems coupled with batteries are evaluated. A
techno-economic optimization is done to determine the sizing of
renewable hybrid power systems both with and without storage for the
Nicaraguan island of Ometepe in [15]. The economic and technical
feasibility of roof mounted solar PV systems in the Maldives is analysed
in [16], while the environmental benefits gained by the reduced usage of
diesel generation are also assessed. A stepped decarbonisation of Ja-
maica using renewables and battery storage is examined using technical
and cost perspectives in [17] to find if such a system could eventually
phase out fossil fuels from the island’s energy production in an
economical manner. In [18] the amount of wind and solar PV generation
that can be technically and economically integrated on the Japanese
islands of Teuri and Yagishiri energy grids without the usage batteries is
investigated and found to be nearly 20%. Renewable energy scenarios
for the entirety of the Canary Island chain, including transport, heating,
and interconnections between the islands are techno-economically
analysed in [19] to determine if the islands are able to achieve 100%
renewable energy production by 2050 at a lower price than the islands’
current fossil fuel dependant energy system. A study of different
renewable energy system scenarios on the Island of La Gomera in the
Canary Islands in [20] seeks to determine if 100% sustainable energy
systems on islands are technically and economically feasible by 2030.
On the island of Gran Canaria a cross-sectoral method is applied in [21]
and different transition strategies are used to conclude that a nearly 76%
renewable energy system could be achieved.

Other authors have prioritized reliability, increased RES penetration
or transition and placement optimization of different energy production
projects rather than focusing foremost, or only, on the techno-economic
optimization. The impact on RES penetration with the interconnecting
Pico and Faial islands in the Azores is analysed in [22] and determines
an increase of 50% could be achieved while [23] considers the planning
paths that can be taken to achieve a 100% RES on the two islands. The
potential of a pumped hydro system coupled with wind power to in-
crease RES penetration is examined for the Greek island of Ikaria, where
multiple criteria are taken into account in the planning exercise [24].
Increased renewable energy penetration in the context of distributed
generation is also considered for the isolated electricity system of the
Greek island of Lesvos in [25], whereas the technical and economic
feasibility of a hybrid wind and pumped hydro system again for Lesvos is
assessed in [26], though with greater emphasis placed on the project
economics. Further studies on the Greek islands include an analysis of
different planning alternatives for the island of Crete that include
environmental and social assessments in addition to techno-economic
[27], as well as an analysis of the possibility of increasing the share of
renewable energy in the island’s energy mix [28]. A methodology for the
optimal siting of solar installations is also applied on Crete in [29],
where social and environmental criteria are employed along with
techno-economic. A spatial planning methodology for offshore wind
farm placement is used together with a techno-economic assessment in
[30] to evaluate the potential for offshore wind development around the
Canary Islands. In [31] a simulation approach using technical, economic
and environmental analysis and optimization is applied on the Island of
El Hierro in Spain and finds that up to 85% of electricity demands and
79% of thermal demands could be met with through increased RES
penetration. A cost, technical and environmentally optimized integra-
tion of island energy and water systems is considered in [32] and finds
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that this method, on the Spanish island of Lanzarote, can result in an
increase in renewable contributions by nearly 20%. Social impacts of
different sustainable energy system scenarios on the Aland Islands be-
tween Sweden and Finland are studied together with scenarios’ cost data
in [33] to determine if a 100% domestic RES production is possible on
the islands by 2030. Different scenarios for renewable energy produc-
tion are considered for the French island of Ushant using techno-
economic, social and environmental indicators in [34], three of those
renewable scenarios were found to cover the island’s energy demand
and those three also outperformed the business as usual case for most
considered indicators.

It can be shown from the literature that many researchers of island
energy planning have placed a significant emphasis on techno-economic
evaluations and/or focus on a single island, or a small chain of nearby
islands. This has sometimes left social and, to a lesser extent, environ-
mental questions relatively unanswered and only provided island
planners parts of the picture they need when making their decisions. In
that way, planners could be unsure of whether or not the developed
solutions are applicable to their island’s geographic, social, technical
and economic circumstances. The development of an integrated energy
planning decarbonisation platform and the results from its application to
a number of diverse islands could assist them in planning for the energy
futures of their islands.

The REACT-DECARB platform

The overall structure and basic flow of analysis of the REACT-
DECARB energy planning decarbonisation platform for islands is
shown in Fig. 1.

The first step of the REACT-DECARB platform is concerned with the
gathering of the data that is then used in the creation of energy sce-
narios. This process requires a significant amount of information on both
the location where potential energy projects are to be deployed and
about the projects themselves. That is specifically important for
geographic islands given the often-high seasonality in electricity de-
mand and the increased costs of transporting technological components
and personnel to them [35]. At the same time, a number of other pa-
rameters must be evaluated. These are both technical in nature (is there
existing infrastructure), as well as legal or social (is the area protected in
some way). Once energy potential and limitations have been assessed
the technologies feasible for deployment can be determined. In this
paper the original data used was obtained from [36].

The next step entails the creation of technologically feasible
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scenarios for the island being reviewed. To be most effective, this step
requires a technical configuration of systems which are optimized to the
specifics of the island and its energy needs. There are a number of
modelling and planning tools that can be used to assist in determining
energy project techno-economic feasibility and there is no perfect model
for all cases. These tools have differing purposes, approaches, method-
ologies, scales and time steps that provide different functionalities suited
for differing applications [37]. For additional information on some
available energy modelling and planning tools and methods along with
their uses, readers are directed to reviews done by [35,38,39], among
others. The different methods used to create the scenarios in this paper
are described further in Section 4.2.

Subsequently, the REACT-DECARB platform comprises an analysis
part that includes an economic, sensitivity and risk analysis as well as an
environmental and social dimension analysis. In this paper, the LCOE is
used for the economic analyses. The LCOE tool is commonly used for
economic analysis to compare electricity generation technologies and
systems. The calculation of LCOE for a project is based on the energy
produced by it over its operational lifetime and the life-cycle costs. LCOE
determines the minimum a project must receive for a unit of electricity
produced to cover its generation lifetime costs [40]. A project’s invest-
ment cost is the total cost of the construction of its components while the
total annual cost can include items such as fuel and operations &
maintenance costs. The total annual costs and annual electricity gener-
ation, generally including degradation of production [41], are dis-
counted each year to the present value as to make them comparable.
There are many different methods for calculating LCOE [42] and two of
the most common are critically assessed in [43].

Finally, this paper uses Monte Carlo analysis (MCA) to consider the
uncertainties involved when calculating an economic indicator, such as
LCOE. MCA uses random sampling from a set of inputs to perform
repeated iterations of a process or calculation to provide a distribution of
the potential results and the likelihood a range of results will occur. By
providing a distribution rather than a single value, the user is better able
to assess the uncertainties around indicators. These indicators can be
costs, electricity prices, energy production and weather variations [44].
MCA has been used in techno-economic analyses for many years to fill
this role [45-47].

Subsequent environmental and social analysis together with a
concluding multi-criteria decision analysis (MCDA) are to be presented
in a forthcoming paper.
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Fig. 1. The REACT-DECARB platform for islands: structure and flow of analysis.
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Results - Case-studies: REACT-DECARB platform application on
EU islands

Island descriptions

The eight EU islands included in the Horizon 2020 REACT project are
of differing sizes and have varying local climates. All were evaluated for
their tangible renewable energy potentials based on their specific
environmental and regulatory conditions [36]. This data was used to
create energy system scenarios which were evaluated using different
technical key performance indicators to develop combinations of
renewable energy projects on the islands. The islands in the REACT
project are La Graciosa in Spain, San Pietro in Italy, the Aran Islands in
Ireland, Gotland in Sweden, the Isle of Wight in England, Lesvos in
Greece, Majorca in Spain and La Réunion in France. The cases of islands
of La Graciosa and Lesvos are described in more detail in this paper. For
more information on the analysis done for the other islands the reader is
directed to [36,48]. The islands’ locations are noted in Fig. 2 below.

Table 1 shows the key characteristics of each island. The two islands
for which more detailed analysis is given in Section 4.4 are further
described below.

The Spanish island of La Graciosa is located in the Atlantic Ocean off
the west coast of Africa in the Canary Island chain. The island has a
permanent population of about 800 individuals and is separated from
the larger island of Lanzarote by only, at its closest point, one kilometre.
The island is connected to Lanzarote with a 1 MW underwater cable
which provides most of the island’s electricity. The island’s economy is
based primarily on fishing and tourism. La Graciosa has favourable
conditions for both wind and solar power [51] but the expansion of both
is limited by most of the island’s designation as a UNESCO protected
site. Some solar PV technology is in place on the island but these in-
stallations are limited to rooftops [52].

The island of Lesvos is located in the northeast Aegean Sea and is the
third largest of the Greek islands. The island has a permanent population
of 110,000 inhabitants and its economy is based on agriculture, farming,
handcraft and tourism. The island has no connection to a larger grid and
this lack of access requires the island to produce its own electricity using
a 75 MW oil-fired thermal facility. Lesvos has favourable conditions for
solar, wind, geothermal and some hydro power and has nearly 9 MW of
solar PV capacity installed, 14 MW of wind power installed and some
geothermal usage which provides limited heating to greenhouses
[53,54]. The island currently has a cap on new renewable generation
due to grid stability issues.

Development of energy scenarios

In total twenty-one (21) energy scenarios were developed for the
REACT islands that had differing objectives; some scenarios sought
complete electricity independence, while others pursued modest in-
creases in the share of renewables in the island’s energy mix. From a
wide range of possible scenarios with RES and storage configurations, a
shortlist was established based on a combination of heuristic and opti-
mization methodologies.

For three islands (La Graciosa, Lesvos, La Réunion) a grid search
employing mixed-integer linear programming was used to optimise RES
and battery storage capacities [48,55]. The main objective of each
optimization was to minimize the operational costs from the standpoint
of the island using limited load flexibility and the flexibility given by the
energy storage. Different scenarios based on the specific circumstances
of these islands were selected from these optimisations for the present
analysis to show the impact of diverse battery and production
combinations.

The scenarios evaluated for two islands, (San Pietro and Majorca),
were generated considering the RES sizing parameters as the variables of
the model. The optimisation criteria for these cases are somewhat more
diverse and include a depiction of the interaction with the wider grid by
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considering:

a) Minimizing maximum export and maximum import values,

b) Maximizing both daily and yearly correlation values between supply
and demand,

c) Minimizing both net metering (export) mean value and its standard
deviation.

For the remaining three islands (Aran Islands, Gotland and the Isle of
Wight) the main criterion for selecting a scenario was to achieve full
energy autonomy by 2030. Complementary, non-autonomous scenarios
were also included for Gotland and the Isle of Wight.

More details regarding all the considered configurations of the sys-
tems and their respective performance parameters used for the short-
listing process for economic analysis can be found in [48]. It should also
be noted that the used methodologies have a few limitations that should
be kept in mind for further studies of a similar type. The selected criteria
that were applied largely focus on monetary indicators such as operating
costs, however more specific grid interaction indicators of each of the
systems could also be analysed. A comprehensive overview of some
these grid interaction indicators is given in [56].

The scenarios chosen for evaluation are shown below in Table 2. The
technologies deployed include solar photovoltaics, wind power, heat
pumps and both thermal and electrical storage. The RETScreen software
was used to assist the analysis of the scenarios’ economic performances
[16,35,57-59].

The environmental and energy profile of the islands differ signifi-
cantly; three islands (La Graciosa, Aran Islands, San Pietro) are small
with significantly lower populations than the rest. This, together with
the existence or the absence of mainland grid connection, make direct
comparison among the islands difficult and inconclusive.

In Section 4.3 we present a full summary of scenarios’ LCOE:s for all
islands. In Section 4.4 sensitivity and risk analysis of one scenario for the
island of La Graciosa (small, interconnected), and one for Lesvos (large,
autonomous) are presented.

Results of the economic analysis

For the economic analysis three methods of LCOE were applied: one
on an annuity basis?, one on a non-annuity basis®, and one based on
equity cost with fixed un-degraded annual production®.

Table 3 summarizes the basic economic assumptions used in all
scenarios.

These calculated LCOEs for the 21 scenarios on the eight islands of
the REACT project are presented in Fig. 3.

There exists a wide variation for the calculated LCOE depending
mainly on whether an autonomous electricity grid is sought, and in
those cases, the calculated LCOE is significantly higher. It can be seen
that generation costs for the 100% renewable electrical autonomy sce-
narios which relied on significant battery capacity, Gotland Scenario II
and Isle of Wight Scenario I, range from 0.45 to 0.58 euros/kWh whereas
the remaining islands range from 0.09 to 0.31 euros/kWh.

Results of the sensitivity and risk analyses for La Graciosa and Lesvos

A sensitivity analysis is conducted to evaluate the impact that the
changes in estimated energy production and initial investment cost have
on the scenarios’ LCOE. Additionally, a risk analysis is used to determine
the distribution of LCOE at a given risk level. The main inputs needed to

2 As used by U.S. National Renewable Energy Laboratory (NREL);
https://www.nrel.gov/
3 As used by International Renewable Energy Agency (IRENA); https://www.

irena.org/
4 As used in RETScreen, Natural Resources Canada; www.retscreen.net
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Fig. 2. Locations of the REACT islands have been boxed in red, [49] edited. (For interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)

perform the economic evaluation of these scenarios include the pro-
curement cost, the cost of installation of energy generation and storage
systems, the operations and maintenance costs, replacement costs and
decommissioning costs [60].

The results, for La Graciosa Scenario I and Lesvos Scenario II are
presented below in Table 4. The LCOE varies slightly between the three
different calculation methods for the same input data but are within a
range of +£10% of each other.

For La Graciosa Scenario I the sensitivity of the LCOE to changes in
the initial cost of the new system as well as the amount of electricity
produced was tested and the results are presented in Table 5 below.

Combinations of changes in initial cost and production for which the
project is economically viable are shown in white, while the orange
areas indicate LCOE where the given combination of initial cost and
production amounts are not viable at the given price of electricity. At the
initial cost and income assumptions, La Graciosa Scenario I's LCOE is
greater than the current local price of electricity of 150€/MWh. A
decrease in the initial costs of the system by 25% results in the system
approaching a breakeven point in economic viability, while a 30%
decrease results in project viability. At initial cost estimates, the system
requires a 30% increase in production to become viable.

The sensitivity analysis above is complemented by a Monte Carlo risk
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Table 1
REACT islands summary information.
La Graciosa San Pietro Aran Gotland Lesvos Isle of Majorca La Réunion
Islands Wight
Island population (approx.) 800 6200 1300 60,000 110,000 140,000 880,000 860,000
Interconnected Yes Yes Yes Yes No Yes Yes No
Existing grid stability issues No No No Yes Yes Yes Yes No
Koppen-Geiger climate Sub-tropical Hot summer Temp. Warm summer Hot summer Temp. Hot summer  Tropical
classification [50] desert Med. oceanic continental Med. oceanic Med. monsoon
Favourable RES technologies Wind, Solar Wind, Solar, Wind Wind, Solar Wind, Solar, Wind, Wind, Solar Wind, Solar,
Geothermal Geothermal Solar Geothermal
Area (km?) 29 51 46 3183 1633 380 3640 2511
Scenario targeted 100% RES No No Yes Yes No Yes No No
electricity autonomy
Table 2
Selected technical energy scenarios for the REACT islands.
La Graciosa San Pietro Aran Islands Gotland Lesvos Isle of Wight Majorca La Réunion
I Photovoltaics MW, 0.5 0.4 0.12 - 30 663 221 800
Wind power MW - 2.3 2.22 310 - - 289 -
Battery — electric MWh 0.4 - 0.3 - 80 1731 - 600
Battery — thermal MWh - - 0.09 - - - - -
Heat pump MW - - 1.77 - - - - -
I Photovoltaics MW, 0.5 4.3 96 30 30 405 400
Wind power MW - - 200 30 20 187 -
Battery electric MWh - - 2100 80 - - 400
I Photovoltaics MW, 0.3 - 96 40 100
Wind power MW 0.2 200 - -
Battery — electric MWh 0.4 - 80 50
v Photovoltaics MW, 13
Wind power MW -
Battery —electric MWh -
Tabl The sensitivity analysis above is complemented by an LCOE distri-
able 3 . . . . bution for Lesvos Scenario II with the same level of risk and number of
Key assumptions used for the economic analysis of all scenarios. . X . .
variations and uncertainty range for the variables as described for the La
Assumption type Amount Unit Graciosa case. The distribution is shown in Fig. 5 and finds that none of
Inflation rate 2 % the LCOE values in any of the 5000 different input combinations for the
Nominal discount rate 10.7 % scenario approach the local electricity price of 100 €/MWh.
Project lifetime 20 Yrs
Solar PV system lifetime 20 Yrs . .
Solar PV module production degradation 0.5 %/yr Discussion of results
Wind turbine lifetime 20 Yrs
Wind turbine production degradation 1.5 %/yr The energy situation on islands presents several particularities to the
Battery system lifetime 15 Yrs energy planner, especially in the process of decarbonisation. Islands
Electricity price increase 2 %/yr A lati li . ilabl
Equity share 30 % vary in area, popu ation, climate, economic structure, available energy

analysis for Scenario I with a 10% level of risk and 5000 possible vari-
ations of the given inputs used in calculating LCOE within a range of
+25% to provide a frequency distribution. The distribution is shown in
Fig. 4 where the height of each column indicates the frequency which
the LCOE values occur within a given range around the shown value on
the x-axis. The distribution shows that LCOE values are relatively near,
but still above, an electricity price of 150 €/MWh in only about 2% of the
5000 different input combinations for the scenario.

The sensitivity of Lesvos Scenario II's LCOE to changes in the initial
cost of the installed system as well as the amount of electricity produced
was also tested. Table 6 below shows that, at the initial cost and pro-
duction assumptions, Lesvos Scenario II's LCOE is unattractive at the
given local electricity price of 100 €/MWh. The sensitivity analysis
shows that, unlike the La Graciosa scenario above, no combination of
adjustments to these key inputs within a range of +30% results in a
viable LCOE. The price of the initial investment would need to be
reduced by more than half or the production increased by more than
90% before the scenario’s LCOE nears the estimated electricity prices on
the island.

resources, grid capacity and connection or lack of it to mainland grid,
energy demand patterns, electricity pricing schemes, regulations
regarding environmental and aesthetics along with other specific re-
strictions. The scenarios developed in this study encompass the majority
of the aforementioned particularities and show a number of interesting
points for the energy planning exercise.

Three LCOE methods were employed on the same scenario data, i.e.,
non-annuity LCOE, annuity LCOE and equity based LCOE. The non-
annuity LCOE provided the highest value in all scenarios. The annuity
LCOE normally provided the lowest value. The equity based LCOE was
somewhere in between. The small differences shown, indicate that, ac-
cording to the particular scheme of discounting and funding basis, the
energy planner should adopt the most appropriate method. The sce-
narios’ LCOE are higher than the average LCOE for either wind or solar
PV given by the International Renewable Energy Agency (IRENA) at
0.051 €/kWh and 0.078 €/kWh, respectively [61], but are in line with
those found for systems containing renewables and, often times, storage
in other island energy planning research [7,9,10,13-15].

One complete electricity autonomous scenario for the Isle of Wight
(Scenario I) and one for Gotland (Scenario II) were included. These two
scenarios required significant battery capacity to be able to rely solely on
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Fig. 3. Variation of LCOE for the twenty one scenarios on the eight islands of the REACT Horizon 2020 EU project.
Decreasing the amount of storage while keeping increased production
Table 4 . from variable sources may increase the likelihood that stability issues
LCOE values for two islands. . . X .
will persist, or possibly worsen, but employed effectively may also prove
LCOE (€/kWh) sufficient to address these issues at a competitive cost.
Non-Annuity Annuity Equity In many cases islands benefit from unstainable subsidised electricity
La Graciosa Scenario I 0.21 019 0.10 prices. Had higher electricity prices been assumed, several scenarios
Lesvos Scenario 1T 0.21 0.19 0.20 would have been much nearer breakeven amounts. A number of the

variable renewable energy production sources. The costs of these inde-
pendent, entirely renewable electricity systems were prohibitive and are
the worst performing of all scenarios. That noted, less aggressive sce-
narios for the two islands, where complete electricity independence
wasn’t achieved, performed much better. This finding is in line with
other research where increasing autonomy levels and usage of renew-
ables together with storage can result in higher and costs [7,9,10,15].
For Lesvos and La Réunion, the two islands without a connection to a
mainland grid and the former with existing stability issues, the sto-
chastic nature of RES means that production increases must be followed
by an increase in storage capacity to ensure stability. Beyond a certain
point, however, the cost of batteries results in excessive system costs.

Table 5
La Graciosa Scenario I LCOE (€/MWh) sensitivity analysis.

islands’ scenarios, particularly those without or with only moderate
amounts of storage in the system mix, are potentially competitive when
compared to the high cost of thermal power generation on the islands.
This is the case, for example, on the islands of Majorca and Lesvos where
the historical costs of producing electricity from thermal sources has
been more than twice the market price [62-64].

On a higher level, the review of the eight islands showed a number of
patterns. No matter the size of the island, its climate or renewable re-
sources, there were always some areas prohibited for development of
some or all types of renewable generation. The reasons for the areas
being off-limits varied, ranging from environmental and preservation of
landscape concerns to military and touristic ones. The size of the area
being excluded was generally quite high. In the cases of La Graciosa, the
Aran Islands and San Pietro, nearly all the islands’ lands were closed to

{— Remove analysis |

Initial costs v| € E]
| Electricity exported to grid v 849 142 1031101 1213 060 1395019 1576 978
MWh -30,0% -15,0% 0,0% 15,0% 30,0%
615,89 -30,0% 2
703,87 -20,0%
791,86 -10,0%
879,84 0,0% 146,95
967,83 10,0% 133,59
1 055,81 20,0% 122,46 140,75 4
1143,79 30,0% 113,04 129,92 146,80




A. Barney et al.

10%—

8% —

o
B
|

Frequency of Occurrence

0% —

Sustainable Energy Technologies and Assessments 47 (2021) 101501

S R N SRR R
§EFEFeTRF s s§85§ssfeds s
€/MWh
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Table 6
Lesvos Scenario II LCOE (€/MWh) sensitivity analysis.
Initial costs v) € E]
Electricity exported to grid v 123594 713 150 079 295 176 563 876 203 048 458 229 533 039
MWh -30,0% -15,0% 0,0% 15,0% 30,0%
87 690,31 -30,0% 219,96 252,01 284,06 316,11 348,16
100 217,50 -20,0% 192,46 220,51 248,55 276,60 304,64
112 744,69 -10,0% 171,08 196,01 220,94 245,86 270,79
125 271,87 0,0% 153,97 176,41 198,84 221,28 243,71
137 799,06 10,0% 139,97 160,37 180,77 201,16 221,56
150 326,25 20,0% 128,31 147,00 165,70 184,40 203,09
162 853,44 30,0% 118,44 135,70 152,96 170,21 187,47
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Fig. 5. Lesvos Scenario II LCOE (€/MWh) energy production cost distribution.

development and large swathes of the other REACT islands were also
closed. Furthermore, the impact tourists had on an island’s demand was
island specific, even within the same climate zones [36].
Unsurprisingly, local climate had a leading role in determining
which renewable sources were appropriate for potential development
but the specifics of the islands, including topography, population and
legal requirements were also strong determinants. These findings point
to the implication that any methodology developed for the specifics of a
single island is likely to need revision before it can be applied to another.
The REACT-DECARB platform was developed with this need for

flexibility in mind and can provide guidance to planners on any island as
they fit the framework’s steps to their needs and abilities. Application of
the REACT-DECARB platform for energy planning on islands outside the
Horizon 2020 REACT project may be warranted to further assess the
platform’s general applicability and value.

No concessions were granted in this analysis for any decreases in
technology costs when replacements were expected. The impact of this
was not evaluated in depth but, at currently predicted price decreases
for the relevant technologies, the effects on project economic viability
are expected to be minor when compared to initial investment costs and
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energy production amounts. Furthermore, the study does not attempt to
estimate the value of any external benefits provided by the scenarios,
such as reductions in air pollution and greenhouses gas emissions.

Conclusions

This paper has introduced and described the structure and flow of
analysis of an innovatory energy transition platform, REACT-DECARB,
for the decarbonisation of islands. The techno-economic analysis, i.e.
development of energy scenarios and economic assessment, have been
applied to renewable energy production and storage scenarios on eight
geographic islands within the EU’s Horizon 2020 REACT project and
were presented in this paper. The flexibility of the REACT-DECARB
platform has been assessed by using a diverse set of methods for sce-
nario generation, economic assessment and risk analysis. Scenarios
seeking complete energy autonomy on islands based on RES and storage,
e.g. the case of Gotland Scenario II and Isle of Wight Scenario I, are far
from economic feasibility. Less aggressive transition scenarios on these
islands, on the other hand, are within the realms of both technical and
near economic feasibility and indicate that investments into such sys-
tems could provide positive returns in certain conditions. At the same
time, it was determined that the economic performance shown by LCOE
depends strongly on the ratio between the stochastic RES production
and the need for sufficient battery storage. Overall, conclusions and
insights for the energy planning of eight differing EU islands are drawn
through usage of the REACT-DECARB platform which can assist plan-
ners with the task of decarbonising their islands.
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